Mục đích của tục cúng ông táo cho trẻ em
A. Đánh dấu sự trưởng thành
B. Cầu mong trẻ hạnh phúc
C. Cầu cho trẻ gặp may
D. Trời phật phù hộ cho em bé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2.
a. Em gắn thêm hình để các bạn hình dung nhé.
b. Vai trò của rừng trong phòng chống biến đổi khí hậu:
- Là lá phổi xanh.
- Điều hoà khí hậu Trái Đất.
a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}+84^0+48^0=180^0\)
=>\(\widehat{A}+132^0=180^0\)
=>\(\widehat{A}=48^0\)
b: Xét ΔCAB có \(\widehat{BAC}=\widehat{BCA}\left(=48^0\right)\)
nên ΔBAC cân tại B
mn oiii mn Giải giúp em một hoặc hai bài cũng được lát nx e phải nộp rồi mọi người sẽ giúp em với:((
Câu 16:
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: ΔABD=ΔACD
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>\(AD\perp\)BC
ΔABD=ΔACD
=>DB=DC
Xét ΔHBC có
HD là đường cao
HD là đường trung tuyến
Do đó: ΔHBC cân tại H
=>HB=HC
mà HC>CD(ΔHDC vuông tại D)
nên HB>CD
mà AB=AC
nên AB+HB>AC+CD
c: Xét ΔABC có
AD,BE,CK là các đường cao
AD cắt BE tại H
Do đó: AD,BE,CK đồng quy tại H
Bài 15:
a: \(P\left(x\right)=2x+6x^4-3x^2-5x^3+3\)
\(=6x^4-5x^3-3x^2+2x+3\)
\(Q\left(x\right)=6x^3-6x^4-2x-7\)
\(=-6x^4+6x^3-2x-7\)
b: P(x)+Q(x)
\(=6x^4-5x^3-3x^2+2x+3-6x^4+6x^3-2x-7\)
\(=x^3-3x^2-4\)
P(x)-Q(x)
\(=6x^4-5x^3-3x^2+2x+3+6x^4-6x^3+2x+7\)
\(=12x^4-11x^3-3x^2+4x+10\)
c: \(M\left(x\right)-P\left(x\right)=5x^4+x^3-x^2+2x+7\)
=>\(M\left(x\right)=P\left(x\right)+5x^4+x^3-x^2+2x+7\)
=>\(M\left(x\right)=6x^4-5x^3-3x^2+2x+3+5x^4+x^3-x^2+2x+7\)
=>\(M\left(x\right)=11x^4-4x^3-4x^2+4x+10\)
Em tham khảo nhé
https://daotaovinacontrol.edu.vn/blogs/tin-tuc-tong-hop/sam-set-la-gi
Bài 5:
a: \(A\left(1\right)=1^5-3\cdot1^4+1^2-5=1-3+1-5=-6\)
\(A\left(-1\right)=\left(-1\right)^5-3\cdot\left(-1\right)^4+\left(-1\right)^2-5\)
\(=-1-3\cdot1+1-5=-6-3+1=-8\)
b: \(B\left(1\right)=-1^4+2\cdot1^3-3\cdot1^2+4\cdot1+5\)
=-1+2-3+4+5
=1-3+4+5
=-2+4+5
=2+5
=7
\(B\left(-1\right)=-\left(-1\right)^4+2\cdot\left(-1\right)^3-3\cdot\left(-1\right)^2+4\cdot\left(-1\right)+5\)
\(=-1+2\cdot\left(-1\right)-3\cdot1-4+5\)
\(=-2-3=-5\)
c: \(C\left(1\right)=1+1^2+1^4+...+1^{100}\)
=1+1+...+1
=51
\(C\left(-1\right)=1+\left(-1\right)^2+\left(-1\right)^4+...+\left(-1\right)^{100}\)
=1+1+...+1
=51
d:
Từ x3 đến x101 thì có \(\dfrac{101-3}{2}+1=\dfrac{98}{2}+1=50\)(số hạng)
\(D\left(1\right)=1+1^3+1^5+...+1^{101}\)
=1+1+...+1
=51
\(D\left(-1\right)=1+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{101}\)
\(=1-\left(1+1+...+1\right)\)
=1-50=-49
Bài 7: f(x)-h(x)=g(x)
=>h(x)=f(x)-g(x)
a: h(x)=f(x)-g(x)
\(=x^2+x+1-\left(4-2x^3+x^4+7x^5\right)\)
\(=x^2+x+1-4+2x^3-x^4-7x^5\)
\(=-7x^5-x^4+2x^3+x^2+x-3\)
b: h(x)=f(x)-g(x)
\(=x^4+6x^3-4x^2+2x-1-x-3\)
\(=x^4+6x^3-4x^2+x-4\)
Bài 6:
f(1)=-3
=>\(a\cdot1+b=-3\)
=>a+b=-3(1)
f(2)=7
=>\(a\cdot2+b=7\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-3\\2a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-2a-b=-3-7\\2a+b=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-a=-10\\b=7-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=10\\b=7-2\cdot10=7-20=-13\end{matrix}\right.\)
Bài 4:
P(x)+Q(x)-R(x)
\(=6x^3-2x^2+3x-2-2x^3+3x^2-x+4-4x^3+2x-1\)
\(=x^2+4x+1\)
R(x)-P(x)-Q(x)
\(=-\left[P\left(x\right)+Q\left(x\right)-R\left(x\right)\right]\)
\(=-\left(x^2+4x+1\right)\)
\(=-x^2-4x-1\)
Bài 3:
a: \(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-6x^4+2x^2-x\)
\(=\left(-2x^4-6x^4\right)+2x^2+\left(-7x-x\right)+\dfrac{1}{2}\)
\(=-8x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=3x^3-x^4-5x^2+x^3-6x+\dfrac{3}{4}\)
\(=-x^4+\left(3x^3+x^3\right)+\left(-5x^2\right)-6x+\dfrac{3}{4}\)
\(=-x^4+4x^3-5x^2-6x+\dfrac{3}{4}\)
b: P(x)+Q(x)
\(=-8x^4+2x^2-8x+\dfrac{1}{2}-x^4+4x^3-5x^2-6x+\dfrac{3}{4}\)
\(=-9x^4+4x^3-3x^2-14x+\dfrac{5}{4}\)
P(x)-Q(x)
\(=-8x^4+2x^2-8x+\dfrac{1}{2}+x^4-4x^3+5x^2+6x-\dfrac{3}{4}\)
\(=-7x^4-4x^3+7x^2-2x-\dfrac{1}{4}\)
\(\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=\dfrac{4x^2\left(3x^2+x+1\right)+2x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)
a: ΔDAC vuông tại D
=>\(\widehat{DAC}+\widehat{DCA}=90^0\)
=>\(\widehat{DAC}=90^0-20^0=70^0\)
b: Xét ΔADV vuông tại D và ΔATV vuông tại T có
AV chung
AD=AT
Do đó: ΔADV=ΔATV
=>\(\widehat{DAV}=\widehat{TAV}\)
=>AV là phân giác của góc DAC
c: Xét ΔATN vuông tại T và ΔADC vuông tại D có
AT=AD
\(\widehat{TAN}\) chung
Do đó: ΔATN=ΔADC
=>AN=AC
Xét ΔANC có \(\dfrac{AD}{AN}=\dfrac{AT}{AC}\)
nên DT//NC
d trời phật phù hộ cho em bé
Các đáp án đều không rõ ràng em ạ, nếu phải chọn thì là D.