K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4

Tổng số tiền 3 quyển sách:

115000 . 3 = 345000 (đồng)

Số tiền Mai phải trả:

345000 - 345000 . 5% = 327750 (đồng) ≈ 327800 (đồng)

Sửa đề: \(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=1-\dfrac{2023}{2025}\)

=>\(\dfrac{2}{2}+\dfrac{2}{6}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{2025}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2025}\)

=>\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{2025}\)

=>\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{2025}\)

=>\(1-\dfrac{1}{x+1}=\dfrac{1}{2025}\)

=>\(\dfrac{1}{x+1}=\dfrac{2024}{2025}\)

=>\(x+1=\dfrac{2025}{2024}\)

=>\(x=\dfrac{1}{2024}\)

a: E là trung điểm của MO

=>\(OE=EM=\dfrac{OM}{2}\)

Ta có: F là trung điểm của ON

=>\(OF=FN=\dfrac{ON}{2}\)

Vì OM và ON là hai tia đối nhau

mà E thuộc tia OM và F thuộc tia ON

nên OE và OF là hai tia đối nhau

=>\(EF=OE+OF=\dfrac{1}{2}MN=5\left(cm\right)\)

b: Để O là trung điểm của MN

nên \(MO=\dfrac{MN}{2}=5\left(cm\right)\)

EF=EA+AB+BF

=AB+AB+AB

=3AB

\(=3\cdot12=36\left(cm\right)\)

a: Trên tia Ox, ta có: OM<ON

nên M nằm giữa O và N

=>OM+MN=ON

=>MN+3=8

=>MN=5(cm)

b: M không là trung điểm của MC vì MM=0

a: Đặt \(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}< 1\)

=>\(A=1+\dfrac{1}{2^2}+...+\dfrac{1}{100^2}< 1+1=2\)

b: Đặt \(B=\dfrac{1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^3}-...-\dfrac{1}{3^{100}}\)

=>\(3B=1-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}\)

=>\(3B+B=1-\dfrac{1}{3}+\dfrac{1}{3^2}-...-\dfrac{1}{3^{99}}+\dfrac{1}{3}-\dfrac{1}{3^2}+...-\dfrac{1}{3^{100}}\)

=>\(4B=1-\dfrac{1}{3^{100}}\)

=>\(B=\dfrac{1}{4}-\dfrac{1}{4\cdot3^{100}}< \dfrac{1}{4}\)

Cảm ơn ạ!!!!

5 tháng 4

Ta có: \(3-y=2\left(x-1\right)^2\) (*) và  \(2\left(x-1\right)^2\ge0\forall x\)

nên \(3-y\ge0\Rightarrow y\le3\)

\(\Rightarrow y\in\left\{0;1;2;3\right\}\) (vì y là số tự nhiên) (1)

Mặt khác: \(2\left(x-1\right)^2\) là số chẵn với mọi x tự nhiên

\(\Rightarrow3-y\) chẵn \(\Rightarrow y\) lẻ (2)

Từ (1) và (2) \(\Rightarrow y\in\left\{1;3\right\}\)

+, Với \(y=1\) thì (*) thành: \(3-1=2\left(x-1\right)^2\)

\(\Rightarrow2\left(x-1\right)^2=2\)

\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

+, Với \(y=3\) thì (*) thành: \(3-3=2\left(x-1\right)^2\)

\(\Rightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\left(tm\right)\)

Vậy \(\left(x;y\right)\in\left\{\left(1;3\right);\left(2;1\right);\left(0;1\right)\right\}\) là các cặp giá trị cần tìm.

5 tháng 4

\(3-y=2\left(x-1^2\right)\)

\(=>\left(3-y\right)-2\left(x-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}3-y=0\\2\left(x-1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=3\\\left(x-1\right)^2=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}y=3\\x-1=0\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}y=3\\x=1\end{matrix}\right.\)

Vậy x = 1; y = 3.

a: Để A là phân số thì \(n+1\ne0\)

=>\(n\ne-1\)

b: Để A là số nguyên thì \(4n+2⋮n+1\)

=>\(4n+4-2⋮n+1\)

=>\(-2⋮n+1\)

=>\(n+1\in\left\{1;-1;2;-2\right\}\)

=>\(n\in\left\{0;-2;1;-3\right\}\)

c: \(A=\dfrac{4n+2}{n+1}=\dfrac{4n+4-2}{n+1}=4-\dfrac{2}{n+1}\)

Để A nhỏ nhất thì \(-\dfrac{2}{n+1}\) nhỏ nhất

=>n+1=1

=>n=0