Cho hình chóp S.ABCD có đáy hình vuông SC ⊥ (ABCD). Gọi I, J lần lượt là hình chiếu vuông góc của C lên SB, SD
a/ Chứng minh AB ⊥ (SBC)
b/ Chứng minh AD⊥(SCD)
c/ Chứng minh SA ⊥ CI
d/ Chứng minh (SAC) ⊥ (CIJ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(lim\dfrac{n^2+\sqrt[3]{1-n^6}}{\sqrt{n^4+1}-n^2}=lim\dfrac{\left(n^2+\sqrt[3]{1-n^6}\right)\left(n^2+\sqrt{n^4+1}\right)}{n^4+1-n^4}\)
\(=lim\left(n^2+\sqrt[3]{n^6\left(\dfrac{1}{n^6}-1\right)}\right)\left(n^2+\sqrt{n^4\left(1+\dfrac{1}{n^4}\right)}\right)\)
\(=lim\left(n^2-n^2\right)\left(n^2+n^2\right)=0\)
I.
Do \(\left(u_n\right)\) là cấp số nhân \(\Rightarrow\)\(u_4=u_3.q\Rightarrow q=\dfrac{u_4}{u_3}=\dfrac{10}{3}\)
\(u_3=u_1q^2\Rightarrow u_1=\dfrac{u_3}{q^2}=\dfrac{27}{100}\)
2. Công thức số hạng tổng quát: \(u_n=\dfrac{27}{100}.\left(\dfrac{10}{3}\right)^{n-1}\)
II.
1. \(\lim\limits\dfrac{-3n^2+2n-2022}{3n^2-2022}=\lim\dfrac{-3+\dfrac{2}{n}-\dfrac{2022}{n^2}}{3-\dfrac{2022}{n^2}}=\dfrac{-3+0-0}{3-0}=-1\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x-3\right)=-1\)
Gọi số đầu là x.
Cấp số cộng là q.
=> Số đầu, thứ 2. 3,4,5 là x,x+q,x+2q,x+3q,x+4q.
Tổng số 1 và 3 là x + (x+2q) = 28
Tổng số 3 và cuối là (x+2q)+(x+4q)=40.
Ta đã có 2 phương trình tạo thành 1 hệ phương trình.
Giải hệ tìm x và q.
Chúc em học tốt!
Ta xếp dc : 256 , 258 , 268 , 286 , 568 , 562 , 528 , 526 , 582 , 586 , 682 , 652 , 658 , 628 , 862 , 852 , 856 , 826
Gieo con xúc sắc hai lần, .
Gọi là biến cố: “Tổng số chấm xuất hiện trong hai lần gieo bằng ”
Khi đó
Xác suất .
a/ Ta có: AB vuông góc với BC, SC vuông góc với BC (vì SC vuông góc với mặt đáy ABCD). Vậy AB // SC. Vậy AB vuông góc (SBC).
b/ Tương tự, ta có: AD vuông góc với CD, SC vuông góc với CD. Vậy AD // SC. Vậy AD vuông góc (SCD).
c/ Ta có: SA vuông góc với mặt đáy ABCD (vì S là đỉnh chóp), CI vuông góc với SB (vì đường thẳng CI là hình chiếu của đường thẳng SC lên mặt phẳng chứa SB và CI). Vậy SA // CI. Vậy SA vuông góc CI.
d/ Gọi M là trung điểm của IJ. Ta cần chứng minh SA vuông góc CM. Ta có: CM vuông góc với IJ (vì nằm trên đường trung trực của IJ). Ta cũng có: SA vuông góc CI (đã chứng minh ở câu c). Vậy ta cần chứng minh CI // JM. Từ đó suy ra (SAC) ⊥ (CIJ). Theo tính chất của hình học không gian, ta có CI vuông góc với mặt phẳng (SBC). Tương tự, JI vuông góc với mặt phẳng (SCD). Vậy CI // JI. Điều này suy ra từ tính chất của mặt phẳng và đoạn thẳng vuông góc với mặt phẳng. Suốt đoạn thẳng IJ, ta có thể lấy một điểm nào đó làm trung điểm, ví dụ M. Vậy CI // JM.