Cho 2 bt
A = \(\dfrac{x}{x-5}\)\(-\dfrac{10x}{x^2-25}-\dfrac{5}{x+5}\)và
B = \(\dfrac{x+9}{x+5}\)( x khác + - 5)
a, Rút gọn A
b, Cho x>5. Tìm x để S = B : A có GTNN. Tìm GTNN ấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)`\(A=\dfrac{x}{x-1}+\dfrac{1}{x+2}-\dfrac{3x}{x^2+x-2}\)
\(A=\dfrac{x}{x-1}+\dfrac{1}{x+2}-\dfrac{3x}{\left(x-1\right)\left(x+2\right)}\)
\(A=\dfrac{x\left(x+2\right)+\left(x-1\right)-3x}{\left(x-1\right)\left(x+2\right)}\)
\(A=\dfrac{x^2+2x+x-1-3x}{\left(x-1\right)\left(x+2\right)}\)
\(A=\dfrac{x^2-1}{\left(x-1\right)\left(x+2\right)}\)
\(A=\dfrac{x+1}{x+2}\)
`b)`\(S=A.B\)
\(S=\dfrac{x+1}{x+2}.\dfrac{x+3}{x+1}\)
\(S=\dfrac{x+3}{x+2}\)
\(S=\dfrac{x+2+1}{x+2}=1+\dfrac{1}{x+2}\)
Ta có:\(x\ge0\Rightarrow x+2\ge2\)
\(\Rightarrow S\le1+\dfrac{1}{2}=\dfrac{3}{2}\)
Vậy \(Max_S=\dfrac{3}{2}\) khi \(x=0\)
`a)`\(M=A.B\)
\(M=\left(\dfrac{x+2}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{x+2}\right):\left(\dfrac{x^2-3x}{2x^2-x^3}\right)\)
\(M=\left(\dfrac{-\left(x+2\right)^2-4x^2-\left(2-x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-3}{2x-x^2}\right)\)
\(M=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}.\dfrac{2x-x^2}{x-3}\)
\(M=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}.\dfrac{2x-x^2}{x-3}\)
\(M=\dfrac{-4x\left(2x-x^2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(M=\dfrac{4x^2\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(M=\dfrac{4x^2}{x-3}\)
`b)`\(\left|x-7\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=4\\x-7=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)
`@` Với `x=11`\(\Rightarrow M=\dfrac{121}{2}\)
`@` Với `x=3` `=>` `M` không xác định
`c)`\(A>0\)
\(\Leftrightarrow\dfrac{4x^2}{x-3}>0\)
`<=>x-3>0`
`<=>x>3`
`a)`\(S=1+A:B\)
\(S=1+\left(\dfrac{x^3-2x^2}{x^3-x^2+x}\right):\left(\dfrac{x+1}{x^3+1}+\dfrac{1}{x^2-x+1}-\dfrac{2}{x+1}\right)\)
\(S=1+\left(\dfrac{x^2-2x}{x^2-x+1}\right):\left(\dfrac{x+1+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)
\(S=1+\dfrac{x^2-2x}{x^2-x+1}:\dfrac{4x-2x^2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(S=1+\dfrac{x^2-2x}{x^2-x+1}.-\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{2\left(x^2-2x\right)}\)
\(S=1-\dfrac{x+1}{2}\)
`b)`\(\left|x-\dfrac{3}{4}\right|=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{5}{4}\\x-\dfrac{3}{4}=-\dfrac{5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
`@`Với `x=2` \(\Rightarrow S=1+\dfrac{2+1}{2}=1+\dfrac{3}{2}=\dfrac{5}{2}\)
`@`Với `x=-1/2` \(\Rightarrow S=1+\dfrac{-\dfrac{1}{2}+1}{2}=\dfrac{5}{4}\)
`c)`\(S=1-\dfrac{x+1}{2}\)
Để `S` nguyên thì \(x+1⋮2\) hay `x` thuộc các số lẻ
`a)`\(P=A:B\)
\(P=\left(\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)\)
\(P=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}:\dfrac{2-x\left(x+1\right)+\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(P=\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}:\dfrac{1-x^2}{\left(x-1\right)\left(x+1\right)}\)
\(P=-\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}\)
`b)`\(P=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(2x^2+2\right)=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow4x^2+4=x^2-1\)
\(\Leftrightarrow3x^2=-5\) ( vô lý )
Vậy không có giá trị `x` thỏa mãn `P=1/2`
\(A=\dfrac{x}{x-5}-\dfrac{10x}{x^2-25}-\dfrac{5}{x+5}\left(ĐKXĐ:x\ne\pm5\right)\)
\(=\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{10x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+5x-10x-5x+25}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)