Chứng minh A Luôn dương biết A=x+6 y-4√xy+2√x-16√y+20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A, đường cao AH
Ta có sinB = AC/BC -> \(\dfrac{1}{2}=\dfrac{AC}{8}\Leftrightarrow AC=4cm\)
Theo định lí Pytago ta có \(AB=\sqrt{BC^2-AC^2}=4\sqrt{3}cm\)
Áp dụng hệ thức \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=6cm\)
Áp dụng hệ thức \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{16\sqrt{3}}{8}=2\sqrt{3}cm\)
Ta có \(S_{AHB}=\dfrac{1}{2}.BH.AH=\dfrac{1}{2}.6.2\sqrt{3}=6\sqrt{3}cm^2\)
Vì tam giác ABC vuông tại A, M là trung điểm nên AM là đường trung tuyến
AM= BM = BC/2 = 4 cm
HM = BH - BM = 6 - 4 = 2 cm
\(S_{AHM}=\dfrac{1}{2}.HM.AH=\dfrac{1}{2}.2.2\sqrt{3}=2\sqrt{3}cm^2\)
\(S_{AMB}=S_{ABH}-S_{AHM}=6\sqrt{3}-2\sqrt{3}=4\sqrt{3}cm^2\)
\(P=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x+1\right)^2}=\left|2x-1\right|+\left|2x+1\right|\)
Theo BĐT Cosi ta được
\(P\ge\left|1-2x+2x+1\right|=2\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}2x-1\le0\\2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)
a) Ta có : \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\bigtriangleup ABC\) vuông tại \(A\) (đpcm)
b) Từ \(AB\cdot AC=AH\cdot BC\)
\(\Rightarrow6\cdot8=AH\cdot10\)
\(\Rightarrow AH=4,8\)
c) Từ \(AB^2=BC\cdot BH\)
\(\Rightarrow6^2=10\cdot HB\)
\(\Rightarrow HB=3,6\)
Từ \(HB+HC=BC\)
\(\Rightarrow3,6+HC=10\)
\(\Rightarrow HC=6,4\)
\(S_{\bigtriangleup ABC}=\dfrac{1}{2}AB\cdot AC\) .
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức \(AB^2=HB.BC=HB\left(HC+HB\right)=HB\left(16+HB\right)\Leftrightarrow225=16HB+HB^2\)
\(\Leftrightarrow HB^2+16BH-225=0\Leftrightarrow HB=9cm\)
BC = HC + HB = 9 + 16 = 25 cm
Áp dụng hệ thức \(AH^2=HB.HC=144\Leftrightarrow AH=12cm\)
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+2}\)
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+2}\)
\(\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{6}+\sqrt{8}+2}{\sqrt{2}+\sqrt{3}+2}\)
\(\dfrac{\sqrt{2}+\sqrt{3}+2+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
`=`\(\sqrt{2}+1\)
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=\sqrt{9}=3\)
\(\sqrt{4+5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10(\sqrt{3+2})^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{3}-20}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{(5-\sqrt{3})^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}=3\)
a, đk x >= 0
\(\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)(tmđk)
b, đk x >= 0
\(\Leftrightarrow x< 2\)Kết hợp với đk vậy 0 =< x < 2
c, đk x >= 0 \(\Leftrightarrow2x< 16\Leftrightarrow x< 8\)
Kết hợp đk vậy 0 =< x < 8
a) \(2\sqrt{x}=14\)
Vì \(x\ge0\) nên bình phương hai vế ta được :
\(x=7^2\Leftrightarrow x=49\)
Vậy \(x=49\)
b) \(\sqrt{x}< \sqrt{2}\Leftrightarrow(\sqrt{x})^2< (\sqrt{2})^2\Leftrightarrow x< 4\)
c) \(\sqrt{2x}< 4\Leftrightarrow(\sqrt{2x})^2< 4^2\Leftrightarrow2x< 16\Leftrightarrow x< 8\)
We must have \(x\ge0\) and \(y\ge0\)
We have: \(A=x+6y-4\sqrt{xy}+2\sqrt{x}-16\sqrt{y}+20\)\(A=\left(x+4y+1-4\sqrt{xy}+2\sqrt{x}-4\sqrt{y}\right)+2y-12\sqrt{y}+19\)\(A=\left(\sqrt{x}-2\sqrt{y}+1\right)^2+2\left(y-6\sqrt{y}+9\right)+1\)\(A=\left(\sqrt{x}-2\sqrt{y}+1\right)^2+2\left(\sqrt{y}-3\right)^2+1\)
Because \(\left(\sqrt{x}-2\sqrt{y}+1\right)^2\ge0;2\left(\sqrt{y}-3\right)^2\ge0;1>0\), we must have \(A>0\), and that is what we must prove.