Cho một hình quạt tròn có số đo \(n^o\) và bán kính \(r=1\). Biết hình quạt tròn này được khai triển từ một hình nón.
a) Tính thể tích lớn nhất có thể của hình nón này.
b) Tính \(n\) khi hình nón trên đạt thể tích lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1: Giải bằng cách tính delta
C2: PT có dạng a-b+c=0
C3: Nhẩm nghiệm có 1 nghiệm là -1 dùng phép chia đ thức
\(PT\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
The common method for the equation \(\sqrt{A}+\sqrt{B}=k\left(A,B,k\ge0\right)\) (k is a constant number) usually is raise each side of the equation to the power of 2:
\(\sqrt{A}+\sqrt{B}=k\) \(\Leftrightarrow\left(\sqrt{A}+\sqrt{B}\right)^2=k^2\) \(\Leftrightarrow A+B+2\sqrt{AB}=k^2\)\(\Leftrightarrow2\sqrt{AB}=k^2-A-B\)
And you raise each side of the equation to the power of 2 again: \(2\sqrt{AB}=k^2-A-B\Leftrightarrow\left(2\sqrt{AB}\right)^2=\left(k^2-A-B\right)^2\) \(\Leftrightarrow4AB=\left(k^2-A-B\right)^2\)
And now we have eliminate all of the square roots and make it easier to solve.
But, I will give you a new method to solve this type of the equation.
a) \(\sqrt{x}+\sqrt{2-x}=2\) \(\left(0\le x\le2\right)\)
We can easily find that \(x=1\). When \(x=1\), \(\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{2-x}=1\end{matrix}\right.\). or \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{2-x}-1=0\end{matrix}\right.\) So, we have to do something like this:
\(\sqrt{x}+\sqrt{2-x}=2\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{2-x}-1\right)=0\)
Notice that \(\sqrt{x}+1\ne0\) and \(\sqrt{2-x}+1\ne0\), we now can write the equation as below:
\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}-1\right)\left(\sqrt{2-x}+1\right)}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}\right)^2-1}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{1-x}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{2-x}+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{2-x}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{x}=\sqrt{2-x}\Leftrightarrow x=1\)
Therefore, the equation a) has the root \(x=1\)
b) \(0\le x\le1\)
Notice that \(x\) can be either equal to 0 or 1
So consider \(x=1\). Then, we have \(\sqrt{x}=1\Leftrightarrow\sqrt{x}-1=0\) and \(\sqrt{1-x}=0\). Therefore, we have to rewrite the equation like this:
\(\sqrt{1-x}+\sqrt{x}=1\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=0\)
\(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{x-1}{\sqrt{x}+1}=0\) \(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{1-x}}-\dfrac{1}{\sqrt{x}+1}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{x}+1}\end{matrix}\right.\)or \(\left[{}\begin{matrix}x=1\\\sqrt{1-x}=\sqrt{x}+1\left(\cdot\right)\end{matrix}\right.\)
And now, use the same method to solve \(\left(\cdot\right)\)
c) We have \(x\ge0\)
We can easily see that \(x=4\), so \(\sqrt{x+5}=3\Leftrightarrow\sqrt{x+5}-3=0\) and \(\sqrt{x}=2\Leftrightarrow\sqrt{x}-2=0\) . Therefore, we can rewrite the equation as below:
\(\sqrt{x+5}-\sqrt{x}=1\Leftrightarrow\left(\sqrt{x+5}-3\right)-\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\dfrac{\left(\sqrt{x+5}-3\right)\left(\sqrt{x+5}+3\right)}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x+5}\right)^2-9}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}\right)^2-4}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\dfrac{x-4}{\sqrt{x+5}+3}+\dfrac{x-4}{\sqrt{x}+2}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\right)=0\)
\(\Leftrightarrow...\)
Notice that \(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\) can't be equal to 0. So this equation only have the root \(x=4\)
d) Similar to the equations above.
Lời giải:
$x^2+2x=3-2\sqrt{3}$
$x^2+2x+1=4-2\sqrt{3}$
$(x+1)^2=4-2\sqrt{3}=(\sqrt{3}-1)^2$
$(x+1)^2-(\sqrt{3}-1)^2=0$
$(x+1-\sqrt{3}+1)(x+1+\sqrt{3}-1)=0$
$(x+2-\sqrt{3})(x+\sqrt{3})=0$
$\Rightarrow x+2-\sqrt{3}=0$ hoặc $x+\sqrt{3}=0$
$\Rightarrow x=\sqrt{3}-2$ hoặc $x=-\sqrt{3}$
Ta có: \(\dfrac{\sqrt{a^2b}+b}{a-b}\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}\div\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{a\sqrt{b}+b}{a-b}\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{a\sqrt{b}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\sqrt{\dfrac{\left(b-\sqrt{ab}\right)^2}{\left(a+\sqrt{b}\right)^2}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\dfrac{a\sqrt{b}+b}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{ab}-b}{a+\sqrt{b}}\) vì \(a>b>0\)
\(=\dfrac{\left(a+\sqrt{b}\right)\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\sqrt{b}}{a+\sqrt{b}}\)
\(=b\)
Đpcm
Lưu ý là \(0\le n\le360\) nhé.