cho tam giác abc nhọn có hai đường cao bd và ce .a) chứng minh tam giác abd đồng dạng với tam ace , b)chứng minh tam giác adeđồng dạng với tam giác abc ,c) gọi h là giao điểm của bdvà ce,k là giao điểm của ah và bc . chứng minh rằng : ah vuông góc với bc và chnhân vớice bằng bc nhân với ck
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
Xét tam giác $BAH$ và $BCA$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)
$\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}$
$\Rightarrow AB^2=BH.BC$
Theo tính chất về tia phân giác ta có:
$\frac{AE}{EC}=\frac{AB}{BC}=\frac{5}{13}$
$\Rightarrow \frac{AE}{AC}=\frac{5}{18}$
$\Rightarrow AE=\frac{5}{18}.AC=\frac{5}{18}.12=\frac{10}{3}$ (cm)
$CE=AC-AE=12-\frac{10}{3}=\frac{26}{3}$ (cm)
Nhớ tick cho mình nha
\(\dfrac{1}{3}\)x2 + \(\dfrac{1}{x^2}\) - 8x + 32 = \(\dfrac{1}{x^2}\) - 2x + 8 ĐK: x ≠ 0
⇔\(\dfrac{1}{3}\)x2 + \(\dfrac{1}{x^2}\) - \(\dfrac{1}{x^2}\) - 8x + 2x + 32 - 8 = 0
⇔\(\dfrac{1}{3}\)x2 - 6x +24 = 0
⇔\(\left(x-12\right)\) \(\left(x-6\right)\) = 0
⇔\(\left[{}\begin{matrix}x-12=0\\x-6=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=12\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
⇒ S = \(\left\{12;6\right\}\)
Vì diện tích mặt bên gắn với chiều rộng là 12 cm2 nên diện tích mặt bên đó bằng chiều rộng nhân với chiều cao.
Từ lập luận trên ta có:
Chiều rộng của hình hộp chữ nhật là:
12 : 4 = 3 (cm)
Thể tích của hình hộp chữ nhật là:
5 \(\times\) 3 \(\times\) 4 = 60 (cm3)
Diện tích xung quanh của hình hộp chữ nhật là:
( 5 + 3) \(\times\) 2 \(\times\) 4 = 64 (cm2)
Diện tích hai mặt đáy của hình hộp chữ nhật là:
5 \(\times\) 3 \(\times\) 2 = 30 (cm2)
Diện tích toàn phần của hình hộp chữ nhật là:
64 + 30 = 94 (cm2)
Kết luận: Thể tích hình hộp chữ nhật 60 cm3
Diện tích toàn phần của hình hộp chữ nhật là: 94 cm2
- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).
- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)
Do đó: \(b^3+3b^2-1=0\)
\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)
\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)
\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)
\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)
\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:
\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).
Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)
Vậy ban đầu phân xưởng 1 nhiều hơn phân xưởng 2:
10+10=20(công nhân)
Ban đầu, phân xưởng 2 có:
(220-20):2=100(công nhân)
Ban đầu, phân xưởng 1 có:
220-100=120(công nhân)
hộ e cái mọi người ơi