Giải và biện luận phương trình sau:
a)m/2m-x=2
b)x+1+1/x-1=m(x-3)
c)(x²+(m+2)x-m)/x+1=-x-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với mọi a,b,c >=1
chứng minh \(\frac{1}{1+a^6}+\frac{2}{1+b^3}+\frac{3}{1+c^2}\ge\frac{6}{1+abc}\)
Ta có BĐT phụ với \(x;y;z\ge1\): \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt[6]{xyz^4}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Áp dụng:
\(P=\frac{1}{1+a^6}+\frac{1}{1+c^2}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\ge\frac{2}{1+a^3c}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\)
\(P\ge2\left(\frac{1}{1+a^3c}+\frac{1}{1+b^3}+\frac{1}{1+c^2}\right)\ge\frac{6}{1+\sqrt[3]{a^3b^3c^3}}=\frac{6}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\\frac{1}{\sqrt{2x-3}+\sqrt{x}}=2\left(1\right)\end{cases}}\)
Xét (1), ta có \(x\ge\frac{3}{2}\Rightarrow\sqrt{x}>1\Rightarrow\sqrt{2x-3}+\sqrt{x}>1\)
\(\Rightarrow VT< 1\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=3\)
đề đungs \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\). ĐK: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\)\(\frac{10x+1-9x-4}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{3x-5-2x+2}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow\)\(x=3\) ( nhan )