K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4

a) 3x - 4 = 5 + x

3x - 2x = 5 + 4

x = 9

Vậy S = {9}

b) 3(x - 1) - 7 = 5(x + 2)

3x - 3 - 7 = 5x + 10

3x - 10 = 5x + 10

3x - 5x = 10 + 10

-2x = 20

x = 20 : (-2)

x = -10

Vậy S = {-10}

15 tháng 4

(x - a)/bc + (x - b)/ca + (x - c)/ab = 2/a + 2/b + 2/c

a(x - a) + b(x - b) + c(x - c) = 2bc + 2ac + 2ab

ax - a² + bx - b² + cx - c² = 2bc + 2ac + 2ab

(a + b + c)x = a² + b² + c² + 2bc + 2ac + 2ab

(a + b + c)x = (a + b + c)²

x = (a + b + c)²/(a + b + c)

x = a + b + c

Vậy S = {a + b + c}

10 tháng 6

Ta có: 𝑥−𝑎𝑏𝑐+𝑥−𝑏𝑐𝑎+𝑥−𝑐𝑎𝑏=2𝑎+2𝑏+2𝑐

(𝑥−𝑎𝑏𝑐−2𝑎)+(𝑥−𝑏𝑐𝑎−2𝑏)+(𝑥−𝑐𝑎𝑏−2𝑐)=0

𝑎(𝑥−𝑎)−2𝑏𝑐+𝑏(𝑥−𝑏)−2𝑐𝑎+𝑐(𝑥−𝑐)−2𝑎𝑏𝑎𝑏𝑐=0

Điều kiện xác định: 𝑎,𝑏,𝑐≠0

Khi đó: (𝑎+𝑏+𝑐)𝑥−𝑎2−2𝑏𝑐−𝑏2−2𝑐𝑎−𝑐2−2𝑎𝑏𝑎𝑏𝑐=0

(𝑎+𝑏+𝑐)𝑥=(𝑎+𝑏+𝑐)2 

+ Nếu 𝑎+𝑏+𝑐=0 thì phương trình có vô số nghiệm.

+ Nếu 𝑎+𝑏+𝑐≠0 thì phương trình có nghiệm duy nhất 𝑥=𝑎+𝑏+𝑐.

22 tháng 4

loading... loading... 

22 tháng 4

a) Với �=−1, hàm số trở thành �=−2�+1.

Xét hàm số �=−2�+1 :

Thay �=0 thì �=1.

Suy ra đồ thị hàm số �=−2�+1 đi qua điểm có tọa độ (0;1).

Thay �=1 thì �=−1.

 Vì đường thẳng (�):�=��+� song song với đường thẳng (�′ ):�=−3�+9 nên: �≠−3;�≠9.

Khi đó ta có: (�):�=−3�+� và �≠9.

Vì đường thẳng (�):�=��+� đi qua �(1;−8) nên: −8=−3.1+�

Suy ra �=−5 (thoả mãn)

Vậy đường thẳng cần tìm là (�):�=−3�−5.

Suy ra đồ thị hàm số �=−2�+1 đi qua điểm có tọa độ (1;−1).

Vẽ đồ thị:

 

 Vì đường thẳng (�):�=��+� song song với đường thẳng (�′ ):�=−3�+9 nên: �≠−3;�≠9.

Khi đó ta có: (�):�=−3�+� và �≠9.

Vì đường thẳng (�):�=��+� đi qua �(1;−8) nên: −8=−3.1+�

Suy ra �=−5 (thoả mãn)

Vậy đường thẳng cần tìm là (�):�=−3�−5.

       
15 tháng 4

Gọi x (h) là thời gian người đó đi từ thành phố về quê (x > 0)

20 phút = 1/3 h

Thời gian người đó đi từ quê lên thành phố là: x + 1/3 (h)

Quãng đường đi từ thành phố về quê: 30x (km)

Quãng đường đi từ quê lên thành phố: 25(x + 1/3) (km)

Theo đề bài, ta có phương trình:

30x = 25(x + 1/3)

30x = 25x + 25/3

30x - 25x = 25/3

5x = 25/3

x = 25/3 : 5

x = 5/3 (nhận)

Vậy quãng đường từ thành phố về quê là: 30 . 5/3 = 50 km

15 tháng 4

a) 3x - 5 = 4

3x = 4 + 5

3x = 9

x = 9 : 3

x = 3

Vậy S = {3}

b) 2x/3 + (3x - 1)/6 = x/2

4x + 3x - 1 = 3x

7x - 3x = 1

4x = 1

x = 1/4

Vậy S = {1/4}

AH
Akai Haruma
Giáo viên
15 tháng 4

2a/

$(2x+1)^2(x-1)(x+2)=100$

$\Leftrightarrow (4x^2+4x+1)(x^2+x-2)=100$

Đặt $x^2+x=a$ thì PT trở thành:

$(4a+1)(a-2)=100$

$\Leftrightarrow 4a^2-8a+a-2=100$

$\Leftrightarrow 4a^2-7a-102=0$

$\Leftrightarrow (a-6)(4a+17)=0$

$\Leftrightarrow a-6=0$ hoặc $4a+17=0$

Nếu $a-6=0$

$\Leftrightarrow x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x=2$ hoặc $x=-3$

Nếu $4a+17=0$

$\Leftrightarrow 4x^2+4x+17=0$

$\Leftrightarrow (2x+1)^2=-16<0$ (vô lý)

Vậy PT có nghiệm $x=2$ hoặc $x=-3$

AH
Akai Haruma
Giáo viên
15 tháng 4

2b/

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-c)(b-a)}+\frac{a-b}{(c-a)(c-b)}=\frac{(a-c)-(a-b)}{(a-b)(a-c)}+\frac{(b-a)-(b-c)}{(b-c)(b-a)}+\frac{(c-b)-(c-a)}{(c-a)(c-b)}\\ =\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\\ =\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\\ =\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)

Ta có đpcm.

1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{DAB}\) chung

Do đó: ΔADB~ΔAEC

=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

=>\(AD\cdot AC=AB\cdot AE\)

2: Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\widehat{DAE}\) chung

Do đó: ΔADE~ΔABC

 

AH
Akai Haruma
Giáo viên
13 tháng 4

Đề lỗi hiển thị. Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.

a: Xét ΔCHA vuông tại H và ΔCIH vuông tại I có

\(\widehat{HCA}\) chung

Do đó: ΔCHA~ΔCIH

=>\(\dfrac{CH}{CI}=\dfrac{HA}{IH}\)

b:

Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: \(\dfrac{CH}{CI}=\dfrac{HA}{IH}\)

=>\(CI\cdot HA=CH\cdot IH=\dfrac{1}{2}\cdot BC\cdot2\cdot OH=BC\cdot OH\)

=>\(\dfrac{CI}{OH}=\dfrac{BC}{HA}\)

Xét ΔBIC và ΔAOH có

\(\dfrac{BC}{AH}=\dfrac{CI}{OH}\)

\(\widehat{BCI}=\widehat{AHO}\left(=90^0-\widehat{HAI}\right)\)

Do đó ΔBIC~ΔAOH