Tìm \(x\)
a) \(\dfrac{2-x}{4}=\dfrac{3x-1}{3}\)
b) \(\dfrac{x}{7}=\dfrac{x+16}{35}\)
c) \(\sqrt{x^2+1}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3^6-M=3^0+3^1+3^2+3^3+3^4+3^5$
$3(3^6-M)=3^1+3^2+3^3+3^4+3^5+3^6$
$\Rightarrow 3(3^6-M)-(3^6-M)=3^6-3^0$
$\Rightarrow 2(3^6-M)=3^6-1$
$\Rightarrow 2M = 2.3^6-(3^6-1)=3^6+1$
$\Rightarrow M=\frac{3^6+1}{2}$
M=36-(35+34+...+31+30)
Đặt A=35+34+...+31+30
3A=36+35+...+32+31
3A-A=36+35+...+32+31-35-34-...-31-30
2A=36-30=>A=\(\dfrac{3^6-3^0}{2}\)
Thay A vào M ta có:
M=36-\(\dfrac{3^6-3^0}{2}\)
M=\(\dfrac{2.3^6}{2}\)-\(\dfrac{3^6-3^0}{2}\)
M=\(\dfrac{3^6.\left(2-1\right)-1}{2}\)
M=\(\dfrac{3^6.1-1}{2}\)
M=\(\dfrac{3^6-1}{2}\)
M=364
Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}$
$3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}$
$\Rightarrow 3A-A=1-\frac{1}{3^{99}}< 1$
$\Rightarrow 2A< 1\Rightarrow A< \frac{1}{2}$
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{99}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{98}}\)
3A - A = ( 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{98}}\)) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{98}}\) - \(\dfrac{1}{3^{99}}\))
2A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{98}}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}\) - ... - \(\dfrac{1}{3^{98}}\) - \(\dfrac{1}{3^{99}}\)
2A = ( \(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3^2}\) - \(\dfrac{1}{3^2}\)) + ... + (1 - \(\dfrac{1}{3^{99}}\))
2A = 0 + 0 + ... + 0 + 1 - \(\dfrac{1}{3^{99}}\)
2A = (1 - \(\dfrac{1}{3^{99}}\))
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{99}}\) < \(\dfrac{1}{2}\)
Giá tiền mỗi bó hoa sau khi giảm:
\(85000-85000.15\%=72250\) (đồng)
Giá tiền 9 bó hoa đầu tiên:
\(72250.9=650250\) (đồng)
Giá tiền 36 bó hoa còn lại:
\(36.72250.80\%=2080800\) (đồng)
Tổng số tiền công ty phải trả:
\(2080800+650250=2731050\) (đồng)
Nếu không có thêm điều kiện gì thì biểu thức này không có giá trị lớn nhất bạn nhé.
a) \(4.\left(-\dfrac{1}{2}\right)^3-2.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)+1\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}+3.\left(-\dfrac{1}{2}\right)+1\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1\)
\(=-\dfrac{3}{2}\)
b) \(8.\sqrt{9}-\sqrt{64}\)
\(=8.3-8\)
\(=24-8\)
\(=16\)
c) \(\sqrt{\dfrac{9}{16}}+\dfrac{25}{46}:\dfrac{5}{23}-\dfrac{7}{4}\)
\(=\dfrac{3}{4}+\dfrac{5}{2}-\dfrac{7}{4}\)
\(=-1+\dfrac{5}{2}\)
\(=\dfrac{3}{2}\)
a) 2/3 + 3/4 . (-4/9)
= 2/3 - 1/3
= 1/3
b) -5/7 . 31/33 + (-5/7) : 33/2
= -5/7 . 31/33 - 5/7 . 2/33
= -5/7 . (31/33 + 2/33)
= -5/7 . 1
= -5/7
c) -3/5 . 13/11 - (-3/5) . 2/11
= -3/5 . (13/11 - 2/11)
= -3/5 . 1
= -3/5
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)
\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)
\(\Rightarrow a=b=c=\dfrac{1}{3}\)
\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)
\(A=1^3+2^3+3^3+...+n^3\)
Ta chứng minh
\(A=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)
+ Với \(n=3\)
\(1^3+2^3+3^3=36\)
\(\left(1+2+3\right)^2=36\)
=> (1) đúng
+ Giả sử (1) đúng với \(n=k\)
\(\Rightarrow1^3+2^3+3^3+...+k^3=\left(1+2+3+...+k\right)^2\)
+ Ta cần chứng minh (1) đúng với \(n=k+1\) Khi đó
\(VT=1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\)
\(=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3=\)
\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\)
\(=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\)
\(VP=\left[1+2+3+...+k+\left(k+1\right)\right]^2=\)
\(=\left[\dfrac{\left(k+1\right)\left(k+1+1\right)}{2}\right]^2=\)
\(\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\)
Như vậy VT=VP nên (1) đúng với \(n=k+1\)
Theo nguyên tắc của phương pháp quy nạp => (1) đúng
Lời giải:
a. $\frac{2-x}{4}=\frac{3x-1}{3}$
$\Rightarrow 3(2-x)=4(3x-1)$
$\Rightarrow 6-3x=12x-4$
$\Rightarrow 6+4=12x+3x$
$\Rightarrow 10=15x$
$\Rightarrow x=\frac{10}{15}=\frac{2}{3}$
b.
$\frac{x}{7}=\frac{x+16}{35}$
$\Rightarrow \frac{5x}{35}=\frac{x+16}{35}$
$\Rightarrow 5x=x+16$
$\Rightarrow 4x=16$
$\Rightarrow x=4$
c.
$\sqrt{x^2+1}=3$
$\Rightarrow x^2+1=9$
$\Rightarrow x^2=8\Rightarrow x=\pm \sqrt{8}=\pm 2\sqrt{2}$