K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

\(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}=\sqrt{14}\)

=>\(\sqrt{14}\left(\sqrt{x+\sqrt{14x-49}}+\sqrt{x-\sqrt{14x-49}}\right)=14\)

<=>\(\sqrt{14x+14\sqrt{14x-49}}+\sqrt{14x-14\sqrt{14x-49}}=14\)

<=>\(\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

+,với x \(\ge\) 7

\(2\sqrt{14x-49}=14\)

<=>x=7

+,với 3,5\(\le\)x<7

\(\sqrt{14x-49}+7+7-\sqrt{14x-49}=14\)

<=>14=14 ( luôn đúng với mọi x thỏa mãn đkxđ)

22 tháng 11 2019

nghĩ giúp mình nha

22 tháng 11 2019

Quen đưa cho phụ huynh vì phụ huynh biết bn sẽ bị điểm kém nên về ăn đòn nát mông.

chúc bn hok tốt!!!

21 tháng 11 2019

Đặt \(P=\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{c^4}{\left(c+2\right)\left(a+2\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{a^2}{\left(a+2\right)\left(b+2\right)}.\frac{a+2}{27}.\frac{b+2}{27}.\frac{1}{9}}=\frac{4a}{9}\)(1)

\(\frac{b^4}{\left(b+2\right)\left(c+2\right)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{b^2}{\left(b+2\right)\left(c+2\right)}.\frac{b+2}{27}.\frac{c+2}{27}.\frac{1}{9}}=\frac{4b}{9}\)(2)

\(\frac{c^4}{\left(c+2\right)\left(a+2\right)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\ge4\sqrt[4]{\frac{c^2}{\left(c+2\right)\left(a+2\right)}.\frac{c+2}{27}.\frac{a+2}{27}.\frac{1}{9}}=\frac{4c}{9}\)(3)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:

\(P+\frac{2\left(a+b+c\right)+12}{27}+\frac{3}{9}\ge\frac{4\left(a+b+c\right)}{9}\)

\(\Leftrightarrow P+\frac{2}{3}+\frac{3}{9}\ge\frac{4}{3}\)

\(\Leftrightarrow P\ge\frac{1}{3}\left(đpcm\right)\)Dấu"="xảy ra \(\Leftrightarrow a=b=c=1\)

22 tháng 11 2019

Cách khác

Ta co:

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\Sigma_{cyc}\left(a+2\right)\left(b+2\right)+12}\ge\frac{\left(a+b+c\right)^4}{36\left(a+b+c\right)+9\left(ab+bc+ca\right)+108}\ge\frac{3^4}{108.2+9.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{3}\)

phương trình đâu vậy?

Phương trình j vậy

\(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}=2}\)

\(\Leftrightarrow\left(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}\right)^2=4\)

\(\Leftrightarrow x-\sqrt{x^2-1}+2\sqrt{\left(x-\sqrt{x^2-1}\right)\left(x+\sqrt{x^2-1}\right)}+x+\sqrt{x^2-1}=4\)

\(\Leftrightarrow2x+2\sqrt{x^2-x^2+1}=4\)

\(\Leftrightarrow2x+2=4\)

\(\Leftrightarrow2x=2\)

\(\Leftrightarrow x=1\)

vậy x=1