K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 11 2024

Diện tích đáy bể là: \(2x^2\) `(m^2)`

Chiều cao bể là: \(\dfrac{72}{2x^2}=\dfrac{36}{x^2}\left(m^2\right)\)

Diện tích xung quanh bể là: \(\left(2x+x\right).2.\dfrac{36}{x^2}=\dfrac{216}{x}\left(m^2\right)\)

Diện tích cần xây là:

\(2x^2+\dfrac{216}{x}=2\left(x^2+\dfrac{54}{x}+\dfrac{54}{x}\right)\ge2.3\sqrt[3]{x^2.\dfrac{54}{x}.\dfrac{54}{x}}=54\sqrt[3]{4}\left(m^2\right)\)

Dấu "=" xảy ra khi \(x^2=\dfrac{54}{x}\Rightarrow x=\sqrt[3]{54}=3,78\left(m\right)\)

1

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

b: ΔODE cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)DE tại I

Xét ΔFOA có

AI,OB là các đường cao

AI cắt OB tại G

Do đó: G là trực tâm của ΔFOA

=>FG\(\perp\)OA 

c: Gọi H là trung điểm của FA

ΔFIA vuông tại I

mà IH là đường trung tuyến

nên IH=HA=HF

=>H là tâm đường tròn ngoại tiếp ΔFIA

ΔOIG vuông tại I

mà IQ là đường trung tuyến

nên QI=QG

=>ΔQIG cân tại Q

\(\widehat{HIQ}=\widehat{HIG}+\widehat{QIG}=\widehat{HAI}+\widehat{QGI}\)

mà \(\widehat{QGI}=\widehat{BGA}\)(hai góc đối đỉnh)

nên \(\widehat{HIQ}=\widehat{BGA}+\widehat{BAG}=90^0\)

=>HI\(\perp\)IQ

=>IQ là tiếp tuyến của đường tròn ngoại tiếp ΔFIA

2 tháng 12 2024

2\(x^2\) + 5\(x\) + 3 = 0

a - b + c = 2 - 5 + 3 = 0

Vậy pt có hai nghiệm phân biệt là:

\(x_1\) = -1; \(x_2\) = - \(\dfrac{c}{a}\) = \(\dfrac{-3}{2}\)

Vậy S= {- \(\dfrac{3}{2}\); -1}

Ta có: \(2x^2+5x+3=0\)

=>\(2x^2+2x+3x+3=0\)

=>2x(x+1)+3(x+1)=0

=>(x+1)(2x+3)=0

=>\(\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

13 tháng 11 2024

a: loading...

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x+2\)

=>\(x^2=-2x+8\)

=>\(x^2+2x-8=0\)

=>(x+4)(x-2)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

Khi x=-4 thì \(y=-\dfrac{1}{2}\cdot\left(-4\right)+2=2+2=4\)

Khi x=2 thì \(y=-\dfrac{1}{2}\cdot2+2=-1+2=1\)

Vậy: Tọa độ giao điểm của (P) và (d) là A(-4;4); B(2;1)

Bài 4:

a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB

nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)

b: Diện tích hình quạt tròn OAB là:

\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)

Diện tích tam giác OAB là:

\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)

Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:

\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)

Bài 4:

a: Xét (O) có \(\widehat{AMB};\widehat{ANB}\) là các góc nội tiếp chắn cung AB

nên \(\widehat{AMB}=\widehat{ANB}=\dfrac{\widehat{AOB}}{2}=\dfrac{120^0}{2}=60^0\)

b: Diện tích hình quạt tròn OAB là:

\(S_{q\left(OAB\right)}=\dfrac{\Omega\cdot R^2\cdot n}{180}=\dfrac{\Omega\cdot6^2\cdot120}{180}=24\Omega\)

Diện tích tam giác OAB là:

\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\cdot sinAOB=\dfrac{1}{2}\cdot6\cdot6\cdot sin120\simeq9\sqrt{3}\)(cm2)

Diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB là:

\(24\Omega-9\sqrt{3}\simeq59,8\left(cm^2\right)\)

Bài 5:

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: ΔAMB vuông tại M

=>AM\(\perp\)BC tại M

ΔCMA vuông tại M

mà MI là đường trung tuyến

nên IA=IM

Xét ΔIAO và ΔIMO có

IA=IM

OA=OM

IO chung

Do đó: ΔIAO=ΔIMO

=>\(\widehat{IAO}=\widehat{IMO}\)

=>\(\widehat{IMO}=90^0\)

=>IM là tiếp tuyến của (O)

c: Xét ΔMAB vuông tại M có \(cosMAB=\dfrac{MA}{AB}=\dfrac{R}{2R}=\dfrac{1}{2}\)

nên \(\widehat{MAB}=60^0\)

Xét ΔMNA vuông tại N có \(sinMAN=\dfrac{MN}{MA}\)

=>\(\dfrac{MN}{R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(MN=\dfrac{R\sqrt{3}}{2}\)

\(\dfrac{MN}{AB}=\dfrac{R\sqrt{3}}{2}:2R=\dfrac{R\sqrt{3}}{2\cdot2R}=\dfrac{\sqrt{3}}{4}\simeq0,43\)

NV
28 tháng 11 2024

Đổi 1 giờ 30 phút =3/2 giờ

1 giờ 25 phút =17/12 giờ

Gọi vận tốc cano khi nước lặng là x (km/h) và vận tốc dòng nước là y (km/h) với x;y>0

Vận tốc cano khi xuôi dòng: `x+y` (km/h)

Vận tốc cano khi ngược dòng: `x-y` (km/h)

Do cano xuôi dòng 40km và ngược dòng 15km hết 3/2 giờ nên ta có pt:

\(\dfrac{40}{x+y}+\dfrac{15}{x-y}=\dfrac{3}{2}\) (1)

Do cano xuôi dòng 30km và ngược dòng 20km hết 17/12 giờ nên ta có pt:

\(\dfrac{30}{x+y}+\dfrac{20}{x-y}=\dfrac{17}{12}\) (2)

Từ (1) và (2) ta có hệ:

\(\left\{{}\begin{matrix}\dfrac{40}{x+y}+\dfrac{15}{x-y}=\dfrac{3}{2}\\\dfrac{30}{x+y}+\dfrac{20}{x-y}=\dfrac{17}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{40}\\\dfrac{1}{x-y}=\dfrac{1}{30}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=40\\x-y=30\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=35\\y=5\end{matrix}\right.\)

29 tháng 11 2024

a: Xét tứ giác OBDA có \(\widehat{OBD}+\widehat{OAD}=90^0+90^0=180^0\)

nên OBDA là tứ giác nội tiếp

=>O,B,D,A cùng thuộc một đường tròn

b: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)CE tại A

Xét ΔBEC vuông tại B có BA là đường cao

nên \(CA\cdot CE=CB^2=\left(2R\right)^2=4R^2\)

c:

i: Xét (O) có

DA,DB là các tiếp tuyến

Do đó: DA=DB

=>D nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OD là đường trung trực của AB

=>OD\(\perp\)AB tại K và K là trung điểm của AB

Xét tứ giác AKOI có \(\widehat{AKO}=\widehat{AIO}=\widehat{KAI}=90^0\)

nên AKOI là hình chữ nhật

=>OA=IK

=>IK=R

ii: ΔAHB vuông tại H

mà HK là đường trung tuyến

nên HK=KA=KB

=>K là tâm đường tròn ngoại tiếp ΔAHB

Gọi M là giao điểm của AO và KI

AKOI là hình chữ nhật

=>AO cắt KI tại trung điểm của mỗi đường

=>M là trung điểm chung của AO và KI

ΔAHO vuông tại H

mà HM là đường trung tuyến

nên \(HM=\dfrac{AO}{2}=\dfrac{KI}{2}\)

Xét ΔHKI có

HM là đường trung tuyến

HM=KI/2

Do đó: ΔHKI vuông tại H

=>HK\(\perp\)HI

Xét (K) có

HK là bán kính

HI\(\perp\)HK tại H

Do đó: HI là tiếp tuyến của (K)

=>HI là tiếp tuyến của đường tròn ngoại tiếp ΔHAB

iii: Vì \(\widehat{AHO}=\widehat{AKO}=\widehat{AIO}=90^0\)

nên A,H,K,O,I cùng thuộc đường tròn đường kính AO

29 tháng 11 2024

trung bình cộng của 50 số lẻ liên tiếp là 50 . Số lớn nhất là?

 

1
29 tháng 11 2024

a: Gọi E là giao điểm của CO và BD

Xét ΔOAC vuông tại A và ΔOBE vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BOE}\)(hai góc đối đỉnh)

Do đó: ΔOAC=ΔOBE

=>OC=OE

Xét ΔODC vuông tại O và ΔODE vuông tại O có

OD chung

OC=OE

Do đó: ΔODC=ΔODE

ΔOAC=ΔOBE

=>\(\widehat{OCA}=\widehat{OEB}\)

mà \(\widehat{OEB}=\widehat{OCD}\)(ΔODE=ΔODC)

nên \(\widehat{OCA}=\widehat{OCD}\)

=>CO là phân giác của góc ACD

Xét ΔOAC vuông tại A và ΔOHC vuông tại H có

CO chung

\(\widehat{ACO}=\widehat{HCO}\)

Do đó: ΔOAC=ΔOHC

=>OA=OH

=>OH=AB/2

Vì OH=OA=OB=AB/2

nên H nằm trên đường tròn tâm O, đường kính AB

b: Xét (O) có

OH là bán kính

CD\(\perp\)OH tại H

Do đó: CD là tiếp tuyến của (O) tại H