Đường thẳng y = 3x + 2 song song với đường thẳng nào dưới đây
A. y = 6x - 3 B. y = -3x + 2
C. y = 3x + 4 C. y = -3x +6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; 20 - 4x = 0
4x = 20
x = 20 : 4
x = 5
Vậy x = 5
b; 3.(2x - 1) - 3x + 1 = 0
6x - 3 - 3x + 1 = 0
6x - 3x = 3 - 1
3x = 2
x = 2/3
Vậy x = 2/3
a; 7x - 8 = 4x + 7
7x - 4x = 8 + 7
3x = 15
x = 15: 3
x = 5
Vậy x = 5
Bài 1:
b; 2x + 5 = 20 - 3x
2x + 3x = 20 - 5
5x = 15
x = 15: 5
x = 3
Vậy x = 3
c; 5y + 12 = 8y + 27
8y - 5y = 12 - 27
3y = - 15
y = -15: 3
y = -5
Vậy y = - 5
d; 13 - 2y = y - 2
y + 2y = 13+ 2
3y = 15
y = 15 : 3
y = 5
Vậy y = 5
B =\(\frac{1}{1.5}\) + \(\frac{1}{5.9}\) + ...+ \(\frac{1}{\left(4n-3\right).\left(4n+1\right)}\)
B = \(\frac14\).(\(\frac{4}{1.5}+\frac{4}{5.9}+\cdots+\frac{4}{\left(4n-3\right).\left(4n+1\right)}\)
B = \(\frac14\).(\(\frac11\) - \(\frac15\) + \(\frac15\) - \(\frac19\) + ... + \(\frac{1}{4n-3}-\frac{1}{4n+1}\))
B = \(\frac14\).(\(\frac11\) - \(\frac{1}{4n+1}\))
B = \(\frac14\).\(\frac{4n}{4n+1}\)
B = \(\frac{n}{4n+1}\)
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(BN=NC=\dfrac{BC}{2}\)
mà AB=BC(ABCD là hình vuông)
nên AM=MB=BN=NC
Xét ΔMBC vuông tại B và ΔNCD vuông tại C có
MB=NC
BC=CD
Do đó: ΔMBC=ΔNCD
=>\(\widehat{BMC}=\widehat{CND}\)
=>\(\widehat{CND}+\widehat{NCO}=90^0\)
=>CM\(\perp\)DN tại O
b: \(BM=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)
ΔMBC vuông tại B
=>\(S_{MBC}=\dfrac{1}{2}\cdot MB\cdot BC=\dfrac{1}{2}\cdot2\cdot4=4\left(cm^2\right)\)
ΔCBM vuông tại B
=>\(CM^2=CB^2+BM^2=4^2+2^2=20\)
=>\(CM=\sqrt{20}=2\sqrt{5}\left(cm\right)\)
Xét ΔCON vuông tại O và ΔCBM vuông tại B có
\(\widehat{MCB}\) chung
Do đó: ΔCON~ΔCBM
=>\(\dfrac{S_{CON}}{S_{CBM}}=\left(\dfrac{CN}{CM}\right)^2=\left(\dfrac{2}{2\sqrt{5}}\right)^2=\dfrac{1}{5}\)
=>\(S_{CON}=\dfrac{S_{MBC}}{5}=\dfrac{4}{5}\left(cm^2\right)\)
\(-\dfrac{15x^2y^3}{18x^3y^5}=-\dfrac{15}{18}\cdot\dfrac{x^2}{x^3}\cdot\dfrac{y^3}{y^5}=\dfrac{-5}{6\cdot x\cdot y^2}\)
a: \(\dfrac{2}{x+3}+\dfrac{1}{x}=\dfrac{2x+x+3}{x\left(x+3\right)}=\dfrac{3x+3}{x\left(x+3\right)}\)
b: \(\dfrac{x+1}{2x-2}+\dfrac{-2x}{x^2-1}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2-2\cdot2x}{2\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x+1\right)}\)
c: Sửa đề: \(\dfrac{x-12}{6x-36}+\dfrac{4}{x^2-6x}\)
\(=\dfrac{x-12}{6\left(x-6\right)}+\dfrac{4}{x\left(x-6\right)}\)
\(=\dfrac{x\left(x-12\right)+24}{6x\left(x-6\right)}=\dfrac{x^2-12x+24}{6x\left(x-6\right)}\)
d: \(\dfrac{6-x}{x^2+3x}+\dfrac{3}{2x+6}\)
\(=\dfrac{-x+6}{x\left(x+3\right)}+\dfrac{3}{2\left(x+3\right)}\)
\(=\dfrac{2\left(-x+6\right)+3x}{2x\left(x+3\right)}=\dfrac{x+12}{2x\left(x+3\right)}\)
e: \(\dfrac{3}{2y+4}-\dfrac{1}{3y+6}\)
\(=\dfrac{3}{2\left(y+2\right)}-\dfrac{1}{3\left(y+2\right)}\)
\(=\dfrac{9-2}{6\left(y+2\right)}=\dfrac{7}{6\cdot\left(y+2\right)}\)
a: \(\dfrac{1}{2x-3}-\dfrac{1}{2x+3}=\dfrac{2x+3-2x+3}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{6}{4x^2-9}\)
b: \(\dfrac{1}{xy-x^2}-\dfrac{1}{y^2-xy}\)
\(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
c: \(\dfrac{x+1}{x+4}-\dfrac{x^2-4}{x^2-16}\)
\(=\dfrac{x+1}{x+4}-\dfrac{x^2-4}{\left(x-4\right)\left(x+4\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-4\right)-x^2+4}{\left(x+4\right)\left(x-4\right)}=\dfrac{x^2-3x-4-x^2+4}{\left(x+4\right)\left(x-4\right)}=\dfrac{-3x}{x^2-16}\)
d: \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x\left(x+1\right)+2\left(2x+3\right)}{2x\left(x+3\right)}=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+2\right)}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
e: \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{-3x+1}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(-3x+1\right)\left(2x-1\right)+2x\left(3x-2\right)-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-6x^2+3x+2x-1+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}=\dfrac{-1}{2x}\)
Gọi E,F lần lượt là trung điểm của AD,BC
Xét hình thang ABCD có
E,F lần lượt là trung điểm của AD,BC
=>EF là đường trung bình của hình thang ABCD
=>EF//AB//CD
Xét ΔDAB có
E,N lần lượt là trung điểm của DA,DB
=>EN là đường trung bình của ΔDAB
=>EN//AB
Xét ΔCAB có
M,F lần lượt là trung điểm của CA,CB
=>MF là đường trung bình của ΔCAB
=>MF//AB
TA có: EN//AB
EF//AB
mà EN,EF có điểm chung là E
nên E,N,F thẳng hàng(1)
Ta có: MF//AB
FE//AB
mà MF,FE có điểm chung là F
nên M,F,E thẳng hàng(2)
Từ (1),(2) suy ra E,N,M,F thẳng hàng
mà EF//AB//CD
nên MN//AB//CD
Cho hình thang ABCD (AB//CD) . ĐƯỜNG THẲNG SONG SONG ĐÁY AB CẮT CÂC CẠNH BÊN AD, BC VÀ ĐƯỜNG CHÉO BD, AC LẦN LƯỢT TẠI M, N, P, Q
A B C H K I
a, tg ABC cân tại A (gt) => ^ABC = ^ACB (tc)
xét tg HCB và tg KBC có : BC chung
^CHB = ^BKC = 90
=> tg ABC = tg KBC (ch-gn)
=> CH = BK (đn)
=> CH/AB = BK/AB mà AB = AC do tam giác ABC cân tại A (Gt)
=> CH/AC = BK/AB
=> HK // BC (đl)
b, sửa đề thành HC.AC = BC.IC
xét tg CHB và tg CIA có : ^ACB chung
^CHB = ^AIC = 90
=> tg CHB đồng dạng với tg AIC (g-g)
=> HC/BC = IC/AC (đn) => HC.AC = BC.IC
c, tg ABC cân tại A (Gt) mà AI là đường cao (gt)
=> AI đồng thời là đtt (đl) => IB = IC = 1/2 BC
mà có : HC.AC = BC.IC (Câu b) ; BC = a; AC = b
=> HC.b = a.a/2 => BC = a^2/2b
Có AH = AC - HC
=> AH = b - a^2/2b = (2b^2 - a^2)/2b
mà HK // BC (câu a) nên
AH/AC = HK/BC => HK = AH.BC/AC = a/b.(2b^2 - a^2)/2b
=> HK = (2ab^2 - a^3)/2b^2 = a - a^3/2b^2
Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔAHB
=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)
=>\(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAFH vuông tại F và ΔAHC vuông tại H có
\(\widehat{FAH}\) chung
DO đó: ΔAFH~ΔAHC
=>\(\dfrac{AF}{AH}=\dfrac{AH}{AC}\)
=>\(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
Y = 3x + 2 song song với đường thẳng khác khi a = a' và b ≠ b'
Vậy đường thẳng y = 3x + 2 song song vói đt y = 3x + 4
Chọn C. y = 3x + 4