K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4

giúp mk với 

21 tháng 4

Cho tam giác ABC lấy m là điểm bất kì trên BC vẽ I là trung điểm của am từ y kẻ ik song song với AB k không thuộc BC tính tỉ số ik phần AB 

 

loading...  loading...  loading...  loading...  

\(\dfrac{3}{x+1}-\dfrac{3x+2}{x^3+1}\)(ĐKXĐ: x<>-1)

\(=\dfrac{3}{x+1}-\dfrac{3x+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3\left(x^2-x+1\right)-3x-2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3x^2-3x+3-3x-2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{3x^2-6x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

16 tháng 4

Em cần làm gì với biểu thức này. 

15 tháng 4

\(m^2(x-1)=2(2x-3)+m\\\Leftrightarrow m^2x-m^2=4x-6+m\\\Leftrightarrow m^2x-4x=m^2+m-6\\\Leftrightarrow (m^2-4)x=(m-2)(m+3)\text{ (1) }\)

+, Xét \(m^2-4=0\Leftrightarrow m=\pm2\)

*) Với \(m=2\) thì pt (1) trở thành:

 \(\left(2^2-4\right)x=\left(2-2\right)\left(2+3\right)\)

\(\Leftrightarrow0x=0\) (luôn đúng)

\(\Rightarrow m=2\) thì pt (1) có vô số nghiệm

*) Với \(m=-2\) thì pt (1) trở thành:

\(\left[\left(-2\right)^2-4\right]x=\left(-2-2\right)\left(-2+3\right)\)

\(\Leftrightarrow0x=-4\) (vô lí)

\(\Rightarrow m=-2\) thì pt vô nghiệm

+, Xét \(m^2-4\ne0\Leftrightarrow m\ne\pm2\)

Khi đó, pt (1) tương đương:

\(\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(m+3\right)\)

\(\Leftrightarrow x=\dfrac{m+3}{m+2}\) (do \(m\ne\pm2\)\(\Rightarrow m\ne\pm2\) thì pt có nghiệm \(x=\dfrac{m+3}{m+2}\).

Vậy: ...

15 tháng 4

giúp nhanh mình với mai mình kiểm tra r

 

15 tháng 4

Đây là dạng toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi. Hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp bezout như sau.

  \(x^2\) + \(x\) - \(xy\) = 3y + 5

\(x^2\) + \(x\) - 5 = 3y + \(xy\)

\(x^2\) + \(x\) - 5 = y.(3 + \(x\))

y = \(\dfrac{x^2+x-5}{3+x}\)  (1); (đk \(x\) ≠ -3) 

\(\in\) Z ⇔ \(x^2\) + \(x\) - 5 ⋮ 3 + \(x\) 

Theo bezout ta có:

\(x^2\) + \(x\) - 5 ⋮ 3 + \(x\) 

⇔ (-3)2 + (-3) - 5 ⋮ 3 + \(x\)

⇔ 1 ⋮ 3 + \(x\)

3 + \(x\) \(\in\) Ư(1) = {-1; 1}

\(x\) \(\in\) {-4; -2}

Lập bảng ta có:

\(x\)  - 4  -2
y  = \(\dfrac{x^2+x-5}{3+x}\) -7 -3

Theo bảng trên ta có: (\(x;y\)) = (-4; -7); (-2; -3)

Vậy (\(x;y\)) = (-4; -7); (-2; -3)

     

 

 

15 tháng 4

                                Giải

Số hình lập phương được sơn đúng một mặt là:

           (4 - 2) x (4 - 2) x 6 = 24 (hình)

Số hình lập phương có đúng hai mặt được sơn là:

          (4 - 2) x 12 = 24 (hình)

Kết luận: a, có 24 hình lập phương nhỏ được sơn đúng một mặt

                   có 24 hình lập phương nhỏ được sơn đúng hai mặt

 

   

 

 

 

 

 

12 tháng 6

a) Ở mỗi mặt, có 4 hình lập phương nhỏ được sơn một mặt (các hình được gạch sọc).

Ở sáu mặt có: 4.6 =24 (hình).

b) Ở mỗi cạnh, có 2 hình lập phương được sơn hai mặt (các hình ghi dấu "𝑥").

Ở 12 cạnh có : 2.12=24 (hình).

15 tháng 4

loading...  

Do M là trung điểm của BC (gt)

⇒ BM = BC : 2 = 30 : 2 = 15 (cm)

BD = AB - AD = 10 - 6 = 4 (cm)

Do MD là đường phân giác của ∆AMB (gt)

⇒ AD/BD = AM/BM

⇒ AM = AD . BM : BD

= 6 . 15 : 4

= 22,5 (cm)

12 tháng 6

A B C M D 6 10 30

Ta có: 𝐴𝐵=𝐴𝐷+𝐷𝐵

Suy ra 𝐷𝐵=𝐴𝐵−𝐴𝐷=10−6=4 cm

𝐴𝑀 là trung tuyến của Δ𝐴𝐵𝐶 suy ra 𝑀 là trung điểm của 𝐵𝐶

Suy ra 𝐵𝑀=𝐶𝑀=12𝐵𝐶=15 cm.

 Xét Δ𝐴𝐵𝑀 có 𝑀𝐷 là phân giác của góc 𝐴𝑀𝐵 nên

𝐴𝑀𝐵𝑀=𝐴𝐷𝐷𝐵

𝐴𝑀𝐵𝑀=64=32

Do đó 𝐴𝑀=32.𝐵𝑀=32.15=22,5 (cm).

 

15 tháng 4

loading...  

a) Xét hai tam giác vuông: ∆AEH và ∆AHB có:

∠A chung

⇒ ∆AEH ∽ ∆AHB (g-g)

⇒ AH/AB = AE/AH

⇒ AH² = AE.AB

b) Xét hai tam giác vuông: ∆AFH và ∆AHC có:

∠A chung

⇒ ∆AFH ∽ ∆AHC (g-g)

⇒ AH/AC = AF/AH

⇒ AH² = AF.AC

Mà AH² = AE.AB (cmt)

⇒ AE.AB = AF.AC

c) Do AE.AB = AF.AC (cmt)

⇒ AE/AC = AF/AB

Xét ∆AEF và ∆ACB có:

AE/AC = AF/AB (cmt)

∠A chung

⇒ ∆AEF ∽ ∆ACB (c-g-c)

Gọi p và p' lần lượt là chu vi của ∆AEF và ∆ACB

⇒ p/p' = 20/30= 2/3

Do ∆AEF ∽ ∆ACB (cmt)

⇒ AE/AC = AF/AB = EF/BC = p/p' = 2/3

Gọi x, y lần lượt là diện tích của ∆AEF và ∆ACB

Do ∆AEF ∽ ∆ACB (cmt)

⇒ x/y = (2/3)² = 4/9

⇒ x/4 = y/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/4 = y/9 = (y - x)/(9 - 4) = 25/5 = 5

x/4 = 5 ⇒ x = 5.4 = 20 (cm²)

y/9 = 5 ⇒ y = 5.9 = 45 (cm²)

Vậy diện tích ∆AEF là 20 cm², diện tích ∆ACB là 45 cm²

loading...  loading...  loading...  loading...  

15 tháng 4

Có 6 khả năng rút được thẻ số 3 nên xác suất của biến cố "Thẻ rút ra là thẻ đánh số 3" là:

P = 6/20 = 3/10

15 tháng 4

              Giải:

 Đổi 1 giờ 30 phút  = 1,5 giờ

Cứ một giờ ca nô xuôi dòng được: 1 : 1,5  = \(\dfrac{2}{3}\)(quãng sông AB)

Cứ một giờ ca nô ngược dòng được: 1 : 2 = \(\dfrac{1}{2}\) (quãng sông AB)

Cứ một giờ dòng nước chảy được: (\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) : 2 = \(\dfrac{1}{12}\)(quãng sông AB)

Quãng sông AB dài là: 3 : \(\dfrac{1}{12}\) = 36 (km)

Vận tốc ca nô khi ngược dòng là: 36 : 2 = 18 (km/h)

Vận tốc riêng của ca nô là: 18 + 3  = 21 (km/h)

Kết luận: Quãng sông AB dài 36 km

               Vận tốc riêng của ca nô là 21 km/h

15 tháng 4

Gọi x (km/h) là vận tốc riêng của ca nô (x > 3)

Vận tốc đi xuôi dòng từ A đến B: x + 3 (km/h)

1 giờ 30 phút = 1,5 giờ

Quãng đường đi xuôi dòng: (x + 3).1,5 (km)

Vận tốc đi ngược dòng từ B về A: x - 3 (km/h)

Quãng đường đi ngược dòng: (x - 3).2 (km)

Do đi cùng một quãng đường AB nên ta có phương trình:

(x + 3).1,5 = (x - 3).2

1,5x + 4,5 = 2x - 6

2x - 1,5x = 4,5 + 6

0,5x = 10,5

x = 10,5 : 0,5

x = 21 (nhận)

Vậy vận tốc riêng của ca nô là 21 km/h