Cho a + b + c ≤ 1 và a, b, c > 0. Chứng minh: 1/a + 1/b + 1/c + a^2 + b^2 + c^2 ≥ 28/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để bất phương trình:mx^2+2mx-3<0 nghiệm đúng với mọi x€R
đúng hơn 0 hợp lý hơn bạn ạ
cbht
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu
Đề của bn có đúng k z
Chúc bạn học tốt
Ta có: \(\hept{\begin{cases}x^2-xy+y^2=8\\x^2+3xy+y^2=15\end{cases}}\Leftrightarrow\hept{\begin{cases}4xy=7\\x^2-xy+y^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4y}\\x^2-xy+y^2=8\end{cases}}\) thay vào ta được:
\(\left(\frac{7}{4y}\right)^2-\frac{7}{4}+y^2=8\Leftrightarrow\frac{49}{16y^2}+y^2=\frac{39}{4}\)
\(\Leftrightarrow\frac{16y^4+49}{16y^2}=\frac{39}{4}\Leftrightarrow16y^4+49=156y^2\)
\(\Leftrightarrow16y^4-156y^2+49=0\)
\(\Leftrightarrow\orbr{\begin{cases}y^2=\frac{39+5\sqrt{53}}{8}\\y^2=\frac{39-5\sqrt{53}}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\sqrt{\frac{39+5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}}\\y=\sqrt{\frac{39-5\sqrt{53}}{8}}\Rightarrow x=\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}}\end{cases}}\)
Vậy HPT có 2 nghiệm (x;y) thỏa mãn:
\(\left(\frac{7}{4\sqrt{\frac{39+5\sqrt{53}}{8}}};\sqrt{\frac{39+5\sqrt{53}}{8}}\right);\left(\frac{7}{4\sqrt{\frac{39-5\sqrt{53}}{8}}};\sqrt{\frac{39-5\sqrt{53}}{8}}\right)\)
\(VT\ge\frac{9}{a+b+c}+\frac{\left(a+b+c\right)^2}{3}=\left(\frac{\left(a+b+c\right)^2}{3}+\frac{1}{3\left(a+b+c\right)}+\frac{1}{3\left(a+b+c\right)}\right)+\frac{25}{3\left(a+b+c\right)}\ge\frac{28}{3}\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)