K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2024

\(\left|2\dfrac{1}{5}-x\right|\)\(+\left|x-\dfrac{1}{5}\right|\)\(+8\dfrac{1}{5}\)\(=1,2\)

\(\Rightarrow\left|2\dfrac{1}{5}-x\right|+\left|x-\dfrac{1}{5}\right|=\dfrac{6}{5}-\dfrac{41}{5}\)

\(\Rightarrow\left|2\dfrac{1}{5}-x\right|+\left|x-\dfrac{1}{5}\right|=\dfrac{-36}{5}\) (vô lý vì \(\left|2\dfrac{1}{5}-x\right|+\left|x-\dfrac{1}{5}\right|\ge0\))

Vậy: Không tìm được giá trị x thoả mãn.

AH
Akai Haruma
Giáo viên
10 tháng 1 2024

Lời giải:

Áp dụng TCDTSBN:

\(\frac{x-1}{2005}=\frac{3-y}{2000}=\frac{x-1+3-y}{2005+2000}=\frac{x-y+2}{4005}=\frac{4009+2}{4005}=\frac{4011}{4005}\)

\(\Rightarrow x-1=\frac{4011}{4005}.2005\Rightarrow x=\frac{536404}{267}\\ 3-y=\frac{4011}{4005}.2000\Rightarrow y\approx -2000\)

 

AH
Akai Haruma
Giáo viên
10 tháng 1 2024

Lời giải:

Gọi $d=ƯCLN(x+2022, x+2015)$

$\Rightarrow (x+2022)-(x+2015)\vdots d$

$\Rightarrow 7\vdots d$

$\Rightarrow d=1$ hoặc $d=7$

Nếu $d=1$ thì $x+2022, x+2015$ nguyên tố cùng nhau

$\Rightarrow (x+2022)^2, (x+2015)^3$ nguyên tố cùng nhau 

$\Rightarrow$ để $(x+2022)^2=64(x+2015)^3$ thì:

$x+2015=1, (x+2022)^2=64$

$\Rightarrow x=-2014$ (tm)

Nếu $d=7$ thì đặt $x+2022=7a, x+2015=7b$ với $a,b$ nguyên tố cùng nhau.

Khi đó: $(7a)^2=64(7b)^3$

$\Rightarrow a^2=448b^3$
Vì $(a,b)=1$ nên $b=1; a^2=448$ (vô lý vì 448 không là scp)

Vậy.......

10 tháng 1 2024

\(\dfrac{x-1}{2005}\) = \(\dfrac{3-y}{2000}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2005}\) = \(\dfrac{x-1+3-y}{2005+2000}\) = \(\dfrac{x-y+2}{4005}\) = \(\dfrac{4009+2}{4005}\) = \(\dfrac{4011}{4005}\)

\(x-1\) = \(\dfrac{4011}{4005}\) \(\times\) 2005

\(x\) - 1 = \(\dfrac{536137}{267}\)

\(x\)       = 1 + \(\dfrac{536137}{267}\)

\(x\)      = \(\dfrac{536404}{267}\)

\(x\) - y = 4009

     y   = \(x\) - 4009 (1) 

     Thay \(x\) = \(\dfrac{536404}{267}\) vào biểu thức (1) ta có

     y = \(\dfrac{536404}{267}\) - 4009

     y = \(\dfrac{-533999}{267}\)

10 tháng 1 2024

Gọi độ dài ba tấm vải lúc đầu là x, y, z (0<x,y,z <210)

Theo bài: sau khi bán \(\dfrac{1}{7}\) tấm vải thứ nhất, \(\dfrac{2}{11}\) tấm vải thứ hai và \(\dfrac{1}{3}\)tấm vải thứ ba thì chiều dài ba tấm bằng nhau

\(\Rightarrow\dfrac{6x}{7}=\dfrac{9y}{11}=\dfrac{2z}{3}\)

\(\Leftrightarrow\dfrac{18x}{21}=\dfrac{18y}{22}=\dfrac{18z}{27}=\dfrac{18\left(x+y+z\right)}{21+22+27}=\dfrac{18.210}{70}=54\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{54.21}{18}=63\\y=66\\z=81\end{matrix}\right.\)(tm 0 < x,y,z < 210)

Vậy độ dài 3 tấm vải lần lượt là 63, 66 và 81 m

 

 

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

AH
Akai Haruma
Giáo viên
10 tháng 1 2024

Đáp án C

10 tháng 1 2024

LÀM ƠN GIÚP MIK ĐI MÀ, NĂN NỈ CÁC BẠN ĐÓ!!!!!!!!!!!!!!!!!!!!!!