K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

Thế cũng ko tra lời được toàm mấy đứa cù lần

4 tháng 12 2019

Áp dụng bất đẳng thức Cauchy 

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)

\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)

Áp dụng BĐT Cauchy - Schwarz :

\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

7 tháng 5 2020

Áp dụng BĐT Cauchy schwarz ta có:

\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)

\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)

Đẳng thức xảy ra tại x=y=z=1/3