Giải phương trình sau
\(\left(a\right)x^3+4x^2+x-6=0\)
\(\left(b\right)x^3-3x^2+4=0\)
\(\left(c\right)x^3-4x^2+5x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tức ghê á, gửi cái ảnh cũng không được, tôi làm vậy !!
A B C M N I O K
Tóm tắt :
Ta có :
\(\frac{MI}{BK}=\frac{MN}{BC}=\frac{AM}{AB}\) ( Talet ) . Rồi chứng minh hai tam giác đồng dạng AMI và ABK
\(\Rightarrow A,I,K\) thẳng hàng (1)
Lại có :
\(\frac{MI}{KC}=\frac{MN}{BC}=\frac{OM}{OC}\) ( Talet ). Rồi chứng minh hai tam giác đồng dạng MIO và CKO
\(\Rightarrow I,O,K\) thẳng hàng (2)
Từ (1) và (2) suy ra A,I,K,O thẳng hàng.
1) Ta có : \(mx^2-\left(m+1\right)x+1=\left(x-1\right)\left(2x-1\right)\)
\(\Leftrightarrow mx^2-\left(m+1\right)x+1=2x^2-3x+1\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}m=2\\m+1=3\end{cases}\Rightarrow m=2}\)
2) Ta có \(\left(x-3\right)\left(ax+2\right)=\left(2x+b\right)\left(x+1\right)\)
\(\Leftrightarrow ax^2+\left(2-3a\right)x-6=2x^2+x\left(2+b\right)+b\)
Đồng nhất hệ số \(\Rightarrow\hept{\begin{cases}a=2\\2-3a=2+b\\-6=b\end{cases}\Rightarrow}\hept{\begin{cases}a=2\\b=-6\end{cases}}\)
A B C M N I K ( Hình vẽ chỉ mang tính chất minh họa )
Áp dụng định lý Talet ta có :
+) \(MI//BK\Rightarrow\frac{AM}{AB}=\frac{MI}{BK}=\frac{AI}{AK}\) (1)
+) \(NI//CK\Rightarrow\frac{AN}{AC}=\frac{NI}{CK}=\frac{AI}{AK}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{MI}{BK}=\frac{NI}{CK}\) (3)
Mà : I là trung điểm của MN \(\Rightarrow MI=NI=\frac{MN}{2}\) (4)
Nên từ (3) và (4) \(\Rightarrow BK=CK\)
\(\Rightarrow\) K à trung điểm của BC (đpcm)
Tách hết ra theo hằng đẳng thức (a-b)^3 và (a+b)^3 rồi tính
\(\left(2x-5\right)^3-\left(3x-4\right)^3+\left(x+1\right)^3=0\)
\(\Leftrightarrow8x^3-60x^2+150x-125-27x^3+108x^2-144x+64+x^3+3x^2+3x+1=0\)
\(\Leftrightarrow-18x^3+51x^2+9x-60=0\)
\(\Leftrightarrow-18x^3-18x^2+69x^2+69x-60x-60=0\)
\(\Leftrightarrow-18x^2\left(x+1\right)+69x\left(x+1\right)-60\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-18x^2+69x-60\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(-18x^2+45x+24x-60\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[-18x\left(x-\frac{5}{2}\right)+24\left(x-\frac{5}{2}\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-\frac{5}{2}\right)\left(-18x+24\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-\frac{5}{2}\right)\left(x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-\frac{5}{2}=0\)
hoặc \(x-\frac{4}{3}=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=\frac{5}{2}\)
hoặc \(x=\frac{4}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;\frac{5}{2};\frac{4}{3}\right\}\)
a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)
<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)
<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)
Phương trình trên bạn tự bấm máy tính nha
<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Đến đây tự làm đc rồi
Vậy x=1 hoặc -2 hoặc -3
b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)
<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c)Câu c mik chưa làm đc
Đáp án câu C:
\(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)
\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)
\(=\left(x-2\right)^2+1\)
\(Mà\left(x-2\right)^2\ge0\)
\(Nên\left(x-2\right)^2+1\ge1\)
\(Khiđó:x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=0\)