Tìm nghiệm của đa thức sau:
a) M=2x-6
b) N=x2+2x+2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao a) bắt chứng minh BD//AC rồi c) lại bắt AC cắt DB tại M, đã song song rồi thì cắt nhau kiểu gì -.- xem lại đi nha
Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b
P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b
Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b
=> b = 2b => b - 2b = 0 => -b = 0 => b = 0
Vậy khi b = 0 , a thì đẳng thức P(x1 + x2) = P(x1) + P(x2)
cho đa thức f (x) thỏa mãn điều kiện x.f(x+1) = (x+2).f(x) .Chứng minh rằng f(x) có ít nhất 2 nghiệm
x.f(x+1) = (x+2).f(x)
Thay x= 0
Ta có :0.f(0+1) = (0+2).f(0)
=>0 = 2.f(0)
=>f(0)=0
Do đó 0 là một nghiệm của đa thức f(x) (1)
Thay x=-2
Ta có: (-2).f(-2+1)=(-2+2).f(-2)
=>(-2).f(-1) = 0 .f(-2)
=>(-2).f(-1)=0
=>f(-1)=0
Do đó -1 là một nghiệm của đa thức f(x) (2)
Vậy từ (1) và (2) =>Đa thức f(x) có ít nhất 2 nghiệm là 0 và -1 (đpcm)
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Nghề của e, ngày nào cx gặp bài này lựa a cho dễ nè :333 b;c tự lm bn nhé !
*) Định lí bổ sung : Trong tam giác cân, đường phân giác suất phát từ đỉnh ứng với cạnh đáy, đồng thời là đường trung tuyến.
Vì \(\Delta\) ABC là \(\Delta\) cân tại A có
AM là đường trung tuyến nên AM vừa là đường cao vừa là đường phân giác
=> \(\widehat{BAM}\) = \(\widehat{MAC}\)
a, Xét \(\Delta\)AMB và \(\Delta\)MAC ta có
\(\widehat{BAM}=\widehat{MAC}\left(cmt\right)\)
AM _ chung
\(\widehat{AMB}=\widehat{AMC}\left(gt\right)\)
=> \(\Delta AMB=\Delta MAC\)(ch-cgv)
a) Vì tam giác ABC là tam giác cân có
AM là đường trugn tuyến
nên AM vừa là đường cao vừa là đường phân giác
=> Góc BAM = góc MAC
Xét ΔAMB và Δ MAC có
góc BAM = góc CAM ( CMT)
AM chung
AMB = góc AMC ( cùng bằng 90 độ )
Vậy Tam giác ABM = tam giác AMC ( c-g-v-g-n-k)
b) Xét tam giác AHM và tam giác AKM có
AM chung Góc AHM =AKM ( = 90 độ)
HAM =MAK ( cmt câu a)
nên Tam giác AHM = tam giác AKM (c-h-g-n)
=> HM = MK
và BHM = MKC , góc B= C
Nên tam giác BHM = KMC
=> HB = KC
c) Ta có BP VUÔNG GÓC VỚI AC
và MK vuông góc với AC
Nên BP// MK
=> góc PBM = KMC
Mà KMC = HMB ( vÌ tam giác BHM = KMC )
Suy ra : PBM = góc HMB
Hay tam giác IBM cân tại I
\(2x^2+x-1=0\)
\(2x^2-x+2x-1=0\)
\(\left(2x-1\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}}\)
\(A=2x^2+x-1=0\)
\(2x^2+2x-x-1=0\)
\(2x\left(x+1\right)-\left(x+1\right)=0\)
\(\left(2x-1\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
a) Ta có M(x) = 0
=> 2x - 6 = 0
=> x = 3
Vậy ngiệm của đa thức M(x) là 0
b) Ta có N(x) = x2 + 2x + 2000 = x2 + x + x + 1 + 1999 = (x2 + x) + (x + 1) + 1999 = x(x + 1) + (x + 1) + 1999 = (x + 1)(x + 1) + 1999
= (x + 1)2 + 1999 \(\ge\) 1999 > 0
=> Đa thức N(x) vô nghiệm
a, Ta có :
\(M=2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
Vậy nghiệm của đa thức là 3
b, \(N=x^2+2x+2020=0\)
Câu này vô nghiệm thật ... con ko bt giải theo cách trên nên con ấn delta vào và ko thể hiện :v
Ta có : \(2^2-4.1.2020=4-8080=--8076< 0\)
Vậy phương trình vô nghiệm