Cho lá Zn vào 200g dd FeCl2, sau phản ứng lấy lá Zn ra rửa nhẹ, sấy khô thấy khối lượng giảm 0,27g
a)Dự đoán hiện tượng và phương trình phản ứng
b) Tính mZn phản ứng, mfe sinh ra
c)Tính C% của FeCl2Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(R_1=\dfrac{U}{0,6}\)
\(R_2=\dfrac{U}{0,3}\)
\(R=R_1+R_2=\dfrac{U}{0,6}+\dfrac{U}{0,3}=\dfrac{3U}{0,6}\)
\(R=\dfrac{U}{0,2}\)
=> Cường độ dòng điện qua R là 0,2A
\(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\\ < =>\left(x+\sqrt{3+x^2}\right)\left(x-\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\\ < =>x^2-3-x^2\left(y+\sqrt{3+y^2}\right)=3\left(x-\sqrt{3+x^2}\right)\\ < =>-\left(y+\sqrt{3+y^2}\right)=x-\sqrt{3+x^2}\left(1\right)\)
Tương tự ta có: \(x+\sqrt{3+x^2}=-\left(y-\sqrt{3+y^2}\right)\left(2\right)\)
Lấy (1) + (2) ta có:
\(-\left(y+\sqrt{3+y^2}\right)-\left(y-\sqrt{3+y^2}\right)=x-\sqrt{3+x^2}+x+\sqrt{3+x^2}\\ < =>-2y=2x\\ < =>2x+2y=0\\ < =>x+y=0\)
a: Xét tứ giác AEIF có \(\widehat{AEI}=\widehat{AFI}=\widehat{FAE}=90^0\)
nên AEIF là hình chữ nhật
=>AE=FI; AF=EI
Ta có: ABCD là hình vuông
=>BD là phân giác của góc ABC; DB là phân giác của góc ADC
=>\(\widehat{ABD}=\widehat{CBD}=\widehat{ADB}=\widehat{CDB}=45^0\)
Xét ΔDEI vuông tại E có \(\widehat{EDI}=45^0\)
nên ΔDEI vuông cân tại E
Xét ΔFIB vuông tại F có \(\widehat{FBI}=45^0\)
nên ΔFIB vuông cân tại F
b: Ta có: AF=EI
mà EI=ED
nên AF=ED
Xét ΔAFD vuông tại A và ΔDEC vuông tại D có
AF=DE
AD=DC
Do đó: ΔAFD=ΔDEC
=>\(\widehat{ADF}=\widehat{DCE}\)
=>\(\widehat{ADF}+\widehat{DEC}=90^0\)
=>CE\(\perp\)DF
c: Ta có: BF=FI
mà FI=AE
nên BF=AE
Xét ΔAEB vuông tại A và ΔBFC vuông tại B có
AE=BF
AB=BC
Do đó: ΔAEB=ΔBFC
=>\(\widehat{ABE}=\widehat{BCF}\)
=>\(\widehat{ABE}+\widehat{BFC}=90^0\)
=>CF\(\perp\)BE
B5:
a) Thay x = 1 và y = 2 vào pt ta có:
\(m\cdot1+2-5=0\\ =>m-3=0\\ =>m=3\)
b) A(0;3) thuộc đường thẳng 4x - my - 6 = 0
=> Thay x = 0 và y = 3 vào đường thẳng ta có:
\(4\cdot0-m\cdot3-6=0\\ =>0-3m-6=0\\=> -3m-6=0\\ =>-3m=6\\ =>m=\dfrac{6}{-3}=-2\)
B11:
Ta có:
\(\left\{{}\begin{matrix}2x+3y=7\\x-3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{3}=2\\2-3y=-1\end{matrix}\right. \Leftrightarrow\left\{{}\begin{matrix}x=2\\3y=2+1=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{3}{3}=1\end{matrix}\right.\)
=> Cặp (2;1) là nghiệm của hpt
B12:
Ta có
\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+5y=3\\4x-12y=20\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-17}{17}=-1\\x+3=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5-3=2\end{matrix}\right.\)
=> Cặp (2;-1) là nghiệm của hpt
b) Để ý rằng phương trình của trục Ox là \(y=0\). Do đó pt hoành độ giao điểm của Ox và d là \(\left(m^2+1\right)x_A-2m=0\Leftrightarrow x_A=\dfrac{2m}{m^2+1}\)
Mà \(OA=\left|x_A\right|=\left|\dfrac{2m}{m^2+1}\right|=\dfrac{2\left|m\right|}{m^2+1}\) , \(OA=\dfrac{4}{5}\)
\(\Rightarrow\dfrac{2\left|m\right|}{m^2+1}=\dfrac{4}{5}\)
\(\Leftrightarrow2m^2-5\left|m\right|+2=0\)
Xét \(m\ge0\), khi đó \(2m^2-5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)
Xét \(m< 0\), khi đó \(2m^2+5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-2\end{matrix}\right.\) (nhận)
Vậy \(m\in\left\{\pm2;\pm\dfrac{1}{2}\right\}\) thỏa mãn ycbt.
c) Theo câu b), ta có \(OA=\dfrac{2\left|m\right|}{m^2+1}\). d cắt Oy tại \(B\left(0,-2m\right)\)
\(\Rightarrow OB=\left|-2m\right|=2\left|m\right|\)
Có \(OA=2OB\Leftrightarrow\dfrac{2\left|m\right|}{m^2+1}=4\left|m\right|\)
\(\Leftrightarrow\left|m\right|\left(2-\dfrac{1}{m^2+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\2m^2+1=0\left(vôlý\right)\end{matrix}\right.\)
Vậy \(m=0\) thỏa mãn ycbt.
d) Gọi \(h\) là khoảng cách từ O đến d thì khi đó:
\(\dfrac{1}{h^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)
\(=\dfrac{1}{\left(\dfrac{2\left|m\right|}{m^2+1}\right)^2}+\dfrac{1}{\left(2\left|m\right|\right)^2}\)
\(=\dfrac{m^4+2m^2+1}{4m^2}+\dfrac{1}{4m^2}\)
\(=\dfrac{m^4+2m^2+2}{4m^2}\)
\(\Rightarrow h^2=\dfrac{4m^2}{m^4+2m^2+2}\)
Đặt \(t=m^2\left(t>0\right)\) thì ta có \(h^2=\dfrac{4t}{t^2+2t+2}=P\)
\(\Leftrightarrow Pt^2+2\left(P-2\right)t+2P=0\) (*)
Có \(\Delta'=\left(P-2\right)^2-2P^2=P^2-4P+4-2P^2=-P^2-4P+4\)
\(\Delta'\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Ta thấy \(P=\dfrac{2P}{P}=2>0\) nên để pt đã cho có 1 nghiệm dương thì \(S>0\Leftrightarrow-2\left(P-2\right)>0\Leftrightarrow P< 2\)
Kết hợp 2 điều kiện, ta được \(-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Vậy \(maxP=-2+2\sqrt{2}\). Dấu "=" xảy ra khi \(t=\dfrac{-2\left(-2+2\sqrt{2}-2\right)}{2\left(-2+2\sqrt{2}\right)}=\sqrt{2}\)
\(\Leftrightarrow m^2=\sqrt{2}\Leftrightarrow m=\pm\sqrt[4]{2}\)
Vậy \(m=\pm\sqrt[4]{2}\) thỏa mãn ycbt.
Ta có: nFeSO4 = nCuSO4 = x (mol)
- Khi nhúng M vào FeSO4:
\(2M+nFeSO_4\rightarrow M_2\left(SO_4\right)_n+nFe\)
2x/n_______x_________________x (mol)
⇒ m tăng = mFe - mM = 56x - 2x.MM/n = 16 (1)
- Khi nhúng vào CuSO4:
\(2M+nCuSO_4\rightarrow M_2\left(SO_4\right)_n+nCu\)
2x/n________x_________________x (mol)
⇒ m tăng = mCu - mM = 64x - 2x.MM/n = 20 (2)
Từ (1) và (2) ⇒ x = 0,5 (mol)
⇒ MM = 12n
Với n = 2 thì MM = 24 (g/mol)
→ M là Mg.
a: \(\left\{{}\begin{matrix}x+3y=11\\3x-y=9-2y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+3y=11\\3x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=11\\9x+3y=27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9x+3y-x-3y=27-11\\x+3y=11\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8x=16\\3y=11-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{11-x}{3}=\dfrac{11-2}{3}=\dfrac{9}{3}=3\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+10y-3x=-1\\2x+4-3x+15y=-12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+10y=-1\\-x+15y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-2x+30y=-32\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x+10y-2x+30y=-1+\left(-32\right)\\x-15y=16\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}40y=-33\\x=15y+16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=15\cdot\dfrac{-33}{40}+16=\dfrac{29}{8}\end{matrix}\right.\)
a)
\(\left\{{}\begin{matrix}x+3y=11\\3x-y=9-2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y=11\\3x+y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+9y=33\\3x+y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}8y=24\\3x+y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\3x+3=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{6}{3}=2\end{matrix}\right.\)
b)
\(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-5y\right)-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-15y-12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\x-15y=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\2x-30y=32\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}40y=-33\\x-15y=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x+\dfrac{99}{8}=16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{33}{40}\\x=16-\dfrac{99}{8}=\dfrac{29}{8}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2y=4\\7y=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=4\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-2=2\\y=1\end{matrix}\right.\)
Vậy: ...
\(\left\{{}\begin{matrix}x+2y=1+3\\2x-3y=1\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-\left(2x-3y\right)=8-1\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\2x+4y-2x+3y=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\\left(2x-2x\right)+\left(4y+3y\right)=7\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2x+4y=8\\0+7y=7\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}2x+4y=8\\y=1\end{matrix}\right.\)
Thay y = 1 vào biểu thức 2\(x\) + 4y = 8 ta có: 2\(x\) + 4.1 = 8
⇒ 2\(x\) + 4 = 8 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 ⇒ \(x\) = 2
Vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Nửa chu vi của hình chữ nhật là: 60:2=30(m)
Chiều rộng của hình chữ nhật là: (30-6):2=12(m)
Chiều dài của hình chữ nhật là: 30 - 12 = 18(m)
Diện tích mảnh đất là: 18 x 12 = 216 (m2)
Đáp số: 216m2
Giải:
Nửa chu vi của mảnh vườn hình chữ nhật là:
60 : 2 = 30 (m)
Gọi chiều rộng lúc đầu của mảnh vườn hình chữ nhật là \(x\) (m); 30 > \(x\) > 0
Chiều dài lúc đầu của mảnh vườn hình chữ nhật là: 30 - \(x\) (m)
Chiều dài của mảnh vườn hình chữ nhật lúc sau là:
30 - \(x\) + 2 = (30 + 2) - \(x\) = 32 - \(x\) (m)
Chiều rộng của hình chữ nhật lúc sau là: \(x\) + 6 (m)
Diện tích của hình chữ nhật lúc sau là:
(32 - \(x\))(\(x\) + 6) (m2)
Diện tích của mảnh vườn hình chữ nhật lúc đầu là: (30 - \(x\)) x \(x\) = 30\(x\) - \(x^2\) (m2)
Theo bài ra ta có phương trình:
(32 - \(x\))(\(x\) + 6) - (30\(x\) - \(x^2\)) = 96
32\(x\) + 192 - \(x^2\) - 6\(x\) - 30\(x\) + \(x^2\) = 96
(32\(x\) - 6\(x\) - 30\(x\)) + 192 - (\(x^2\) - \(x^2\)) = 96
(26\(x\) - 30\(x\)) + 192 + 0 = 96
- 4\(x\) + 192 = 96
4\(x\) = 192 - 96
4\(x\) = 96
\(x\) = 96 : 4
\(x\) = 24
Chiều dài ban đầu của hình chữ nhật là: 30 - 24 = 6 (m)
6 < 24
Chiều dài nhỏ hơn chiều rộng, không có hình chữ nhật nào có kích thước thoả mãn đề bài.
a, Lã kẽm có một lớp Sắt màu xám bao phủ bên ngoài.
PTHH:
\(Zn+FeCl_2\rightarrow ZnCl_2+Fe\)
0,03 0,03 0,03 0,03
Gọi nZn = nFe = a(mol)
0,27g = 65a - 56a
=> a = 0,03(mol)
b, \(m_{Zn\left(pư\right)}=0,03.65=1,95\left(g\right)\)
\(m_{Fe\left(sra\right)}=0,03.56=1,68\left(g\right)\)
c, \(m_{FeCl_2}=0,03.127=3,81\left(g\right)\)
\(m_{dd}=1,95+200=201,95\left(g\right)\)
\(C\%FeCl_2=\dfrac{3,81}{201,95}.100\%=1,89\left(\%\right)\)