K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: XétΔHBA vuông tại H và ΔHAC vuông tại H có

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔHBA~ΔHAC

=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)

=>\(HB\cdot HC=HA^2\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

nên ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>\(\widehat{MAC}=\widehat{ACB}\)

\(\widehat{MAC}+\widehat{AED}=\widehat{ABC}+\widehat{ACB}=90^0\)

=>DE\(\perp\)AM

\(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)

=>\(\dfrac{x\left(x+1\right)+1}{x+1}+\dfrac{x\left(x+2\right)+2}{x+2}-\dfrac{x\left(x+3\right)+3}{x+3}-\dfrac{x\left(x+4\right)+4}{x+4}=0\)

=>\(x+x-x-x+\dfrac{1}{x+1}+\dfrac{2}{x+2}-\dfrac{3}{x+3}-\dfrac{4}{x+4}=0\)

=>\(\left(\dfrac{1}{x+1}-1\right)+\left(\dfrac{2}{x+2}-1\right)-\left(\dfrac{3}{x+3}-1\right)-\left(\dfrac{4}{x+4}-1\right)=0\)

=>\(\dfrac{-x}{x+1}+\dfrac{-x}{x+2}-\dfrac{-x}{x+3}-\dfrac{-x}{x+4}=0\)

=>x=0

19 tháng 4

loading...  

a) Sửa đề: Chứng minh MN là đường trung bình của ∆AFC

Do M là trung điểm của AF (gt)

N là trung điểm của AC (gt)

⇒ MN là đường trung bình của ∆AFC

b) Xét hai tam giác vuông: ∆AFC và ∆HFA có:

∠F chung

⇒ ∆AFC ∽ ∆HFA (g-g)

c) Xét hai tam giác vuông: ∆AHC và ∆FHA có:

∠ACH = ∠FAH (cùng phụ ∠AFC)

⇒ ∆AHC ∽ ∆FHA (g-g)

⇒ AH/HF = HC/AH

⇒ AH² = HF.HC

Bài 3.1:

a: Thay x=1 vào y=2x-1, ta được:

\(y=2\cdot1-1=1\)

vậy: A(1;1)

b: Thay y=-3/2 vào y=2x-1, ta được:

\(2x-1=-\dfrac{3}{2}\)

=>\(2x=-\dfrac{1}{2}\)

=>\(x=-\dfrac{1}{4}\)

Vậy: \(B\left(-\dfrac{1}{4};-\dfrac{3}{2}\right)\)

c: 

loading...

Bài 3.2:

a: Thay m=1 vào (1), ta được:

\(y=\left(-1-2\right)x+1-1=-3x\)

Vẽ đồ thị:

loading...

b: 

Thay x=2 và y=0 vào (1), ta được:

\(2\left(-m-2\right)+m-1=0\)

=>-2m-4+m-1=0

=>-m-5=0

=>m=-5

c: Thay x=0 và y=2 vào (1), ta được:

\(0\left(-m-2\right)+m-1=2\)

=>m-1=2

=>m=3

d: Khi m=-5 thì (1): \(y=\left(-5-2\right)x+\left(-5\right)-1=-7x-6\)

Khi m=3 thì (1); \(y=\left(-3-2\right)x+3-1=-5x+2\)

Vẽ đồ thị:

loading...