x/2 = y/3 và x/y = 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{27^4\cdot4^3}{9^5\cdot8^2}=\dfrac{\left(3^3\right)^4\cdot2^6}{\left(3^2\right)^5\cdot2^6}=\dfrac{3^{12}}{3^{10}}=3^2=9\)
Đặt \(B=\dfrac{5}{1\cdot2\cdot3}+\dfrac{5}{2\cdot3\cdot4}+...+\dfrac{5}{98\cdot99\cdot100}\)
=>\(B=5\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{98\cdot99\cdot100}\right)\)
\(B=5A=\dfrac{-5\cdot4949}{19800}=-\dfrac{4949}{3960}\)
Sửa đề: `x/2 = y/3` và `xy = 54`
Đặt `x/2 = y/3 = k`
`=> {(x = 2k),(y=3k):}`
Khi đó: `(2k)(3k) = 54`
`<=> 6k^2 = 54`
`<=> k^2 = 9`
`<=> k^2 = 3^2`
`<=> k = -3` hoặc `k = 3`
Xét `k = -3: `
`x = -3.2 = -6`
`y = -3.3 = -9`
Xét `k = 3: `
`x = 3.2 = 6`
`y = 3.3 = 9`
Vậy ...
a, Diện tích xung quanh bể cá dạng hình hộp chữ nhật là:
\(2\cdot\left(4+5\right)\cdot10=180\left(cm^2\right)\)
Diện tích toàn phần bể cá dạng hình hộp chữ nhật là:
\(180+2\cdot4\cdot5=220\left(cm^2\right)\)
Thể tích bể cá dạng hình hộp chữ nhật là:
\(4\cdot5\cdot10=200\left(cm^3\right)\)
b, Diện tích xung quanh khi đổ nước vào bể cao 8 cm là:
\(2\cdot\left(4+5\right)\cdot8=144\left(cm^2\right)\)
Diện tích toàn phần khi đổ nước vào bể cao 8 cm là:
\(144+2\cdot4\cdot5=184\left(cm^2\right)\)
Thể tích khi đổ nước vào bể cao 8 cm là:
\(4\cdot5\cdot8=160\left(cm^3\right)\)
c, Thể tích phần không chứa nước là:
\(200-160=40\left(cm^2\right)\)
d, Tổng thể tích sau khi bỏ đá là:
\(160+100=260\left(cm^3\right)\)
Nước tràn ra ngoài là:
\(260-200=60\left(cm^3\right)\)
a) Diện tích xung quanh của bể cá là:
\(\left(4+5\right)\times2\times10=180\left(cm^2\right)\)
Diện tích toàn phần của bể cá là:
\(180+2\times4\times5=220\left(cm^2\right)\)
Thể tích của bể là:
\(4\times5\times10=200\left(cm^3\right)\)
b) Diện tích xung quanh:
\(\left(4+5\right)\times2\times8=144\left(cm^2\right)\)
Diện tích toàn phần:
\(144+2\times4\times5=184\left(cm^2\right)\)
Thể tích của nước có trong bể:
\(4\times5\times8=160\left(cm^3\right)\)
c) Diện tích phần không có nước là:
`200-160=40(cm^3)`
d) Khi bỏ cục đá vào thì thể tích của nước và cục đá là:
\(100+160=260\left(cm^2\right)\)
Vì: `260>200`
`=>` Nước bị tràn ra ngoài
Thể tích nước bị tràn là:
`260-200=60(cm^3)`
\(1,M+N\\ =\left(2x^2-4xy+6y^2\right)+\left(2x^2+2xy-4y^2\right)\\ =2x^2-4xy+6y^2+2x^2+2xy-4y^2\\ =\left(2x^2+2x^2\right)+\left(-4xy+2xy\right)+\left(6y^2-4y^2\right)\\ =4x^2-2xy+2y^2\\ 2,M+\left(x^3-2xy^2+y^3\right)=x^3+5xy^2-y^3\\ =>M=\left(x^3+5xy^2-y^3\right)-\left(x^3-2xy^2+y^3\right)\\ =>M=x^3+5xy^2-y^3-x^3+2xy^2-y^3\\ =>M=\left(x^3-x^3\right)+\left(5xy^2+2xy^2\right)+\left(-y^3-y^3\right)\\ =>M=7xy^2-2y^3\)
1)
M + N = (2x² - 4xy + 6y²) + (2x² + 2xy - 4y²)
= 2x² - 4xy + 6y² + 2x² + 2xy - 4y²
= (2x² + 2x²) + (-4xy + 2xy) + (6y² - 4y²)
= 4x² - 2xy + 2y²
2)
M + (x³ - 2xy² + y³) = x³ + 5xy² - y³
M = x³ + 5xy² - y³ - (x³ - 2xy² + y³)
= x³ + 5xy² - y³ - x³ + 2xy² - y³
= (x³ - x³) + (5xy² + 2xy²) + (-y³ - y³)
= 7xy² - 2y³
Bài 1: \(\widehat{xOn}+\widehat{mOn}=180^0\)(hai góc kề bù)
=>\(\widehat{xOn}+30^0=180^0\)
=>\(\widehat{xOn}=150^0\)
Bài 2:
Ta có: \(\widehat{xOt}+\widehat{xOn}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}=180^0-60^0=120^0\)
Ta có: \(\widehat{xOn}=\widehat{tOm}\)(hai góc đối đỉnh)
mà \(\widehat{xOn}=60^0\)
nên \(\widehat{tOm}=60^0\)
Ta có: \(\widehat{xOt}=\widehat{mOn}\)(hai góc đối đỉnh)
mà \(\widehat{xOt}=120^0\)
nên \(\widehat{mOn}=120^0\)
a: \(\left|5-\dfrac{2}{3}x\right|>=0\forall x;\left|\dfrac{2}{3}y-4\right|>=0\forall y\)
Do đó: \(\left|5-\dfrac{2}{3}x\right|+\left|\dfrac{2}{3}y-4\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5-\dfrac{2}{3}x=0\\\dfrac{2}{3}y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5:\dfrac{2}{3}=\dfrac{15}{2}\\y=4:\dfrac{2}{3}=6\end{matrix}\right.\)
b: \(\left|\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x\right|>=0\forall x;\left|1,5-\dfrac{3}{4}-\dfrac{3}{2}y\right|>=0\forall y\)
Do đó: \(\left\{{}\begin{matrix}\dfrac{2}{3}-\dfrac{1}{2}+\dfrac{3}{4}x=0\\1,5-\dfrac{3}{4}-\dfrac{3}{2}y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}x=-\dfrac{2}{3}+\dfrac{1}{2}=-\dfrac{1}{6}\\\dfrac{3}{2}y=1,5-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{6}:\dfrac{3}{4}=-\dfrac{1}{6}\cdot\dfrac{4}{3}=\dfrac{-4}{18}=-\dfrac{2}{9}\\y=\dfrac{1}{2}\end{matrix}\right.\)
c: \(\left|x-2020\right|>=0\forall x;\left|y-2021\right|>=0\forall y\)
Do đó: \(\left|x-2020\right|+\left|y-2021\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2020=0\\y-2021=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2020\\y=2021\end{matrix}\right.\)
d: \(\left|x-y\right|>=0\forall x,y\)
\(\left|y+\dfrac{21}{10}\right|>=0\forall y\)
Do đó: \(\left|x-y\right|+\left|y+\dfrac{21}{10}\right|>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{21}{10}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{21}{10}\)
`[6.(-1/3)^3 -3.(-1/3)+1]:(-1/3-1)`
`= [6.((-1)^3)/(3^3)-(-3/3)+1]:(-1/3-3/3)`
`= [6. (-1/27) + 1+1]:(-4/3)`
`= [(-6/27) + (1+1)] . (-3/4)`
`= [-2/9 + 2] . (-3/4)`
`= [-2/9 + 18/9] . (-3/4)`
`= 16/9 . (-3/4)`
`= -4/3`
\(\left[6\left(-\dfrac{1}{3}\right)^3-3\cdot\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)
\(=\left[6\cdot\dfrac{-1}{27}+1+1\right]:\dfrac{-4}{3}\)
\(=\left(-\dfrac{2}{9}+2\right):\dfrac{-4}{3}=\dfrac{16}{9}\cdot\dfrac{3}{-4}=\dfrac{-48}{36}=-\dfrac{4}{3}\)
Bài giải
a. Số tiền cả gốc và lãi của mẹ bạn Long rút ra khi hết kì hạn 1 năm là:
( 30000 x 5.3 : 100 ) + 30000 = 31590 ( triệu đồng )
b. Giá của chiếc xe đạp có số tiền là :
31590 x 5 : 90 = 1755 ( triệu đồng )
Đáp số : a là 31590 triệu đồng
b là 1755 triệu đồng
Cho mình hỏi tí bạn có sai đề không mà mẹ Long gửi ngận hàng 30000 triệu tức 30 ngàn tỉ dữ vậy =0 với lại vẫn còn nghỉ hè mà bạn kiểm tra cái gì dọ ?