x/y = 4/7 và x.y = 112. Tìm x,y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán nâng cao chuyên đề về tỉ lệ thức và tỉ số vận tốc. cấu trúc thi hsg. Hôm nay olm sẽ hướng dẫn em giải dạng này như sau:
Gọi vận tốc của Hoa là \(x\) (km/h); đk \(x\) > 0
Vận tốc của Mai là y (km/h); y > 0
Đổi 30 phút = 0,5 giờ; \(\dfrac{2}{5}\)giờ = 0,4 giờ
Vì cùng một quãng đường vận tốc tỉ lệ nghịch với thời gian nên ta có:
\(\dfrac{x}{y}\) = \(\dfrac{0,5}{0,4}\) = \(\dfrac{5}{4}\) ⇒ \(\dfrac{x}{5}\) = \(\dfrac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x-y}{5-4}\) = \(\dfrac{3}{1}\) = 3
\(x\) = 3.5 = 15; y = 3.4 = 12
Kết luận: Vận tốc của Hoa là 15 km/h; Vận tốc của Hoa là 12 km/h
Chắc đề yêu cầu tìm x nguyên
\(\dfrac{x^2+3x-1}{x+2}=\dfrac{x^2+2x+x+2-3}{x+2}=\dfrac{x\left(x+2\right)+x+2-3}{x+2}\)
\(=\dfrac{\left(x+2\right)\left(x+1\right)-3}{x+2}=x+1-\dfrac{3}{x+2}\)
\(\dfrac{x^2+3x-1}{x+2}\in Z\Rightarrow\dfrac{3}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x=\left\{-5;-3;-1;1\right\}\)
Gọi CR,CD,CC là x,y,z (Đơn vị: cm, Điều kiện: x,y,z thuộc N sao)
Theo bài ra: CD hơn CC là 30cm
⇒ \(\dfrac{y}{6}\) - \(\dfrac{z}{5}\) = k ⇒ x= 6k
z= 5k
⇒ y - z = 30
6k - 5k = 30
(6 - 5)k = 30
1k = 30
k = 30:1
k = 30
⇒ y= 30.6 = 180
z= 30.5 = 150
Vì: \(\dfrac{x}{4}\) = \(\dfrac{y}{6}\) = \(\dfrac{z}{5}\)
⇒ \(\dfrac{x}{4}\) = \(\dfrac{180}{6}\) = \(\dfrac{150}{5}\)
⇒ x= 180.4:6 = 120
Vậy: x= 120
y= 180
z= 150
\(n^3-n^2+n+7⋮n^2+1\)
\(\Rightarrow n^3+n-n^2-1+8⋮n^2+1\)
\(\Rightarrow n\left(n^2+1\right)-\left(n^2+1\right)+8⋮n^2+1\)
\(\Rightarrow8⋮n^2+1\)
\(\Rightarrow n^2+1=Ư\left(8\right)\)
Mà \(n^2+1\ge1;\forall n\)
\(\Rightarrow n^2+1=\left\{1;2;4;8\right\}\)
\(\Rightarrow n^2=\left\{0;1;3;7\right\}\)
Trong 4 giá trị nói trên chỉ có 0 và 1 là SCP, do đó ta có:
\(\left[{}\begin{matrix}n^2=0\\n^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
\(\left(3n^2-n+13\right)⋮\left(n-1\right)\)
\(\Rightarrow\left(3n^2-3n+2n-2+15\right)⋮\left(n-1\right)\)
\(\Rightarrow3n\left(n-1\right)+2\left(n-1\right)+15⋮\left(n-1\right)\)
\(\Rightarrow15⋮\left(n-1\right)\)
\(\Rightarrow n-1=Ư\left(15\right)\)
\(\Rightarrow n-1=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow n=\left\{-14;-4;-2;0;2;4;6;16\right\}\)
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}+\dfrac{3y}{60}+\dfrac{-z}{-28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=-2\\\dfrac{y}{20}=-2\\\dfrac{z}{28}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=15.\left(-2\right)=-30\\y=20.\left(-2\right)=-40\\z=28.\left(-2\right)=-56\end{matrix}\right.\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{-124}{62}=-2\)
Do đó:
\(\dfrac{x}{15}=-2\Rightarrow x=15.\left(-2\right)=-30\)
\(\dfrac{y}{20}=-2\Rightarrow y=20.\left(-2\right)=-40\)
\(\dfrac{z}{28}=-2\Rightarrow z=28.\left(-2\right)=-56\)
Vậy x = -30; y = -40; z = -56.
\(#Tmiamm\)
Lời giải:
a. Tam giác ABM không cân bạn nhé. Tam giác ABD mới là tam giác cân.
Gọi $K$ là giao của $AM$ và $BD$
Xét tam giác $ABK$ và $ADK$ có:
$\widehat{BAK}=\widehat{DAK}$ (do $AK$ là phân giác $\widehat{BAC}$)
$\widehat{AKB}=\widehat{AKD}=90^0$
$AK$ chung
$\Rightarrow \triangle ABK=\triangle ADK$ (g.c.g)
$\Rightarrow AB=AD$
$\Rightarrow ABD$ là tam giác cân tại $A$
b. Xét tam giác $ABM$ và $ADM$ có:
$AM$ chung
$\widehat{BAM}=\widehat{DAM}$ (do $AM$ là phân giác $\widehat{BAC}$)
$AB=AD$ (cmt)
$\Rightarrow \triangle ABM=\triangle ADM$ (c.g.c)
c. Đề thiếu. Bạn xem lại.
theo đề bài ta có: x/y=4/7 => x= \(\dfrac{4}{7}y\)
Thay vào biểu thức x.y=112
=>\(\dfrac{4}{7}y^2\)=112
<=>\(y^2\)=112:\(\dfrac{4}{7}\)
<=>\(y^2\)=196
<=>\(\left[{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)
Với y=14 => x=\(\dfrac{4}{7}.14\)=\(8\)
VỚi y=-14 => x=\(\dfrac{4}{7}.\left(-14\right)\)=-8