\(B=3-2x+\sqrt{1+4x+4x^2}\)
a) rút gọn B
b) tính gt B khi \(x=2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1+4x+4x^2}=\sqrt{\left(2x+1\right)^2}=\left|2x+1\right|\)
a)\(A=\sqrt{x-2\sqrt{x}+1}+\sqrt{x}\)
\(=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{x}\)
\(=\sqrt{x}-1+\sqrt{x}\)(vì x>0)
\(=2\sqrt{x}-1\)
Vậy....
\(A=\sqrt{x-2\sqrt{x}+1}+\sqrt{x}=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{x}\)
\(=\left|\sqrt{x}-1\right|+\sqrt{x}\)
Nếu \(x\ge1\) thì \(A=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
Nếu 0 < x < 1 thì \(A=1-\sqrt{x}+\sqrt{x}=1\)
b, \(x=2\frac{1}{4}\Rightarrow x=\frac{9}{4}>1\)
Vậy \(x=2\frac{1}{4}\) thì
\(A=2\sqrt{x}-1=2.\sqrt{\frac{9}{4}}-1=2.\frac{3}{2}-1=2\)
\(\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5-2\sqrt{5.3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}\)
\(\sqrt{x^2-2x+1}=x^2-1\)\(,DKXD:x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x-1=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right):\left(x-1\right)=x+1\)
\(\Leftrightarrow x+1=1\)
\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ)
Vậy.......
ĐK: \(x^2\ge1\)
\(\sqrt{x^2-2x+1}=x^2-1\)
\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(x+1\right)\)
Nếu \(x\ge1\Rightarrow x-1=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=1\left(x\ge1\right)\)
Nếu \(x< 1\Rightarrow1-x=\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=-2\left(x\le-1\right)\)
Vậy \(x\in\left\{1;-2\right\}\)
\(TXD:\hept{\begin{cases}x\supseteq1\\-\sqrt{\frac{1}{2}}\subseteq x\subseteq\sqrt{\frac{1}{2}}\end{cases}}\)
\(\sqrt{1-2x^2}^2=\left(x-1\right)^2\)
<=> \(1-2x^2=x^2-2x+1\)
\(3x^2-2x=0\)
\(x\left(3x-2\right)=0\orbr{\begin{cases}x=0\left(KTM\right)\\x=\frac{2}{3}\left(TM\right)\end{cases}}\)
\(Vậy\)\(x=\frac{2}{3}\)\(là\)\(nghiệm\)\(phương\)\(trình\).
\(\sqrt{15-6\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}=|3-\sqrt{6}|=3-\sqrt{6}\)
ta có B=3-2x+2x+1
=>B=4
b)với x=2015 thì B=4
\(B=3-2x+\sqrt{1+4x+4x^2}=3-2x+\sqrt{\left(2x+1\right)^2}=3-2x+\left|2x+1\right|\)
Nếu \(x\ge-\frac{1}{2}\Rightarrow B=3-2x+2x+1=4\)
Nếu \(x< -\frac{1}{2}\Rightarrow B=3-2x-2x-1=4-4x\)
b, x = 2015 tức là \(x>-\frac{1}{2}\)
Vậy với x = 2015 thì B = 4