Cho tam giác ABC có góc B= góc C. Tia phân giác của góc BAC cắt BC tại D. Vẽ tia Ax là tia đối của tia AB.\
a, Trong góc CAx vẽ tia Ay // BC. Chứng minh Ay là tia phân giác của góc CAx
b, Chứng minh AD vuông góc với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lí Py - ta - go vào tam giác AOB vuông tại O, có:
AB2 = AO2 + OB2
AB2 = 22 + 32
AB2 = 4 + 9
AB2 = 13
AB = \(\sqrt{13}\) (cm
b, Áp dụng định lí Py - ta - go vào tam giác BOC vuông tại O, có:
BC2 = OC2 + OB2
BC2 = 42 + 32
BC2 = 16 + 9
BC2 = 25
BC = \(\sqrt{25}\)
BC = 5 ( cm )
c, Áp dụng định lí Py - ta - go vào tam giác COD vuông tại O, có:
CD2 = OC2 + OD2
CD2 = 42 + 12
CD2 = 16 + 1
CD2 = 17
CD = \(\sqrt{17}\)(cm)
d, Áp dụng định lí Py - ta - go vào tam giác AOD vuông tại O có:
DA2 = AO2 + DO2
DA2 = 22 + 12
DA2 = 4 + 1
DA2 = 5
DA = \(\sqrt{5}\)(cm)
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
a+b+c=230a+b+c=230
Và ⎧⎪ ⎪⎨⎪ ⎪⎩a.13=b.12a.15=c.17⇔⎧⎪ ⎪⎨⎪ ⎪⎩a3=b2a5=c7⇔⎧⎪ ⎪⎨⎪ ⎪⎩a15=b10a15=c21⇔a15=b10=c21{a.13=b.12a.15=c.17⇔{a3=b2a5=c7⇔{a15=b10a15=c21⇔a15=b10=c21
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a15=b10=c21=a+b+c15+10+21=23046=5a15=b10=c21=a+b+c15+10+21=23046=5
⇔⎧⎪⎨⎪⎩a=15.5b=10.5c=21.5⇔⎧⎪⎨⎪⎩a=75b=50c=105⇔{a=15.5b=10.5c=21.5⇔{a=75b=50c=105
Vậy ...
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
a+b+c=230a+b+c=230
Và ⎧⎪ ⎪⎨⎪ ⎪⎩a.13=b.12a.15=c.17⇔⎧⎪ ⎪⎨⎪ ⎪⎩a3=b2a5=c7⇔⎧⎪ ⎪⎨⎪ ⎪⎩a15=b10a15=c21⇔a15=b10=c21{a.13=b.12a.15=c.17⇔{a3=b2a5=c7⇔{a15=b10a15=c21⇔a15=b10=c21
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a15=b10=c21=a+b+c15+10+21=23046=5a15=b10=c21=a+b+c15+10+21=23046=5
⇔⎧⎪⎨⎪⎩a=15.5b=10.5c=21.5⇔⎧⎪⎨⎪⎩a=75b=50c=105⇔{a=15.5b=10.5c=21.5⇔{a=75b=50c=105
Vậy ...Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
a+b+c=230a+b+c=230
Và ⎧⎪ ⎪⎨⎪ ⎪⎩a.13=b.12a.15=c.17⇔⎧⎪ ⎪⎨⎪ ⎪⎩a3=b2a5=c7⇔⎧⎪ ⎪⎨⎪ ⎪⎩a15=b10a15=c21⇔a15=b10=c21{a.13=b.12a.15=c.17⇔{a3=b2a5=c7⇔{a15=b10a15=c21⇔a15=b10=c21
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a15=b10=c21=a+b+c15+10+21=23046=5a15=b10=c21=a+b+c15+10+21=23046=5
⇔⎧⎪⎨⎪⎩a=15.5b=10.5c=21.5⇔⎧⎪⎨⎪⎩a=75b=50c=105⇔{a=15.5b=10.5c=21.5⇔{a=75b=50c=105
Vậy ...
Gọi 3 phần lần lượt là: a ; b và c.
- Ta có: a + b + c = 230
A là:
\(\frac{1}{3}\)x \(\frac{1}{5}\) = \(\frac{1}{15}\)=> \(\frac{a}{15}\)
B là:
\(\frac{1}{2}\) x \(\frac{1}{5}\) = \(\frac{1}{10}\) => \(\frac{b}{10}\)
C là:
\(\frac{1}{3}\) x \(\frac{1}{7}\) = \(\frac{1}{21}\) = \(\frac{c}{21}\)
Ta thấy:
\(\frac{a}{15}\) = \(\frac{b}{10}\) = \(\frac{c}{21}\) = \(\frac{a+b+c}{15+10+21}\) = \(\frac{230}{46}\)= 5
Vậy ...... ( Bạn tự làm tiếp )
~ Bài này mik làm bừa !!! Sai thì mong bn bỏ qua
~ Hok T ~
Gọi số phải tìm là ¯¯¯¯¯¯¯¯abcabc¯.Xét
P=¯¯¯¯¯¯¯¯abca+b+c=1+99a+9ba+b+cP=abc¯a+b+c=1+99a+9ba+b+c Min ⇔c=9⇔c=9
Khi đó P=1+99a+9ba+b+9=1+9(a+b+9)+90a−81a+b+9=10+90a−81a+b+9P=1+99a+9ba+b+9=1+9(a+b+9)+90a−81a+b+9=10+90a−81a+b+9
PP min khi chỉ khi b=9b=9 và a=1a=1
Số cần tìm là 199
học tốt nha (>v<)
Đáp án :
-Gọi số có ba chữ số cần tìm là ¯¯¯¯¯abcabc¯ (a;b;c∈N;0<a≤9;0≤b;c≤9)(a;b;c∈N;0<a≤9;0≤b;c≤9)
Ta có : k=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abca+b+c=100a+100b+ca+b+c=1+99a+9ba+b+ck=abca+b+c¯=100a+100b+ca+b+c=1+99a+9ba+b+c
-Với a,ba,b xác định thì kk bé nhất khi cc lớn nhất :
⇒c=9⇒c=9
k=10+99a+9ba+b+9=1+9.(a+b+9)+90a−81a+b+9k=10+99a+9ba+b+9=1+9.(a+b+9)+90a-81a+b+9
=1+9+90a−81a+b+9=10+90a−81a+b+9=1+9+90a-81a+b+9=10+90a-81a+b+9
Với aa xác định thì kk bé nhất khi bb lớn nhất :
⇒b=9⇒b=9
k=10+90a−81a+18=10+9.10a−9a+18=10+9.10(a+18)−189a+18k=10+90a-81a+18=10+9.10a-9a+18=10+9.10(a+18)-189a+18
=10+90−9.189a+18=190−9.189a+18=10+90-9.189a+18=190-9.189a+18 bé nhất khi aa bé nhất
⇒a=1⇒a=1
Vậy số phải tìm là 199199 và k=19919k=19919
Sai thôi bn nhé
Ta có:
-28+37=9;-28+(-138)=-166; -28+19=-9
-28+(-42)=-70; 37+(-138)=-101;37+(-42)=-5
-138+19=-119;-138+(-42)=-180;19+(-42)=-23
Vậy các cặp(a,b) thỏa mãn là (-28;19); (-28;-42);(19;-42)
Trả lời:
Ta có: \(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow B=\left(1+1+...+1+1+1\right)+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow B=\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1\)
\(\Rightarrow B=\left(\frac{2007}{2}+\frac{2}{2}\right)+\left(\frac{2006}{3}+\frac{3}{3}\right)+...+\left(\frac{2}{2007}+\frac{2007}{2007}\right)+\left(\frac{1}{2008}+\frac{2008}{2008}\right)\)\(+\frac{2009}{2009}\)
\(\Rightarrow B=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)\(+\frac{2009}{2009}\)
\(\Rightarrow B=2009\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow B=2009\cdot A\)
\(\Rightarrow\frac{B}{A}=2009\)
\(\Rightarrow\frac{A}{B}=\frac{1}{2009}\)
1-Điểm M thuộc đường trung trực của AB
=> MA = MB (định lí thuận)
Vì MA = 4cm nên MB = 4cm
Ta có : x9 = 64x7
=> x9 - 64x7 = 0
=> x7(x2 - 64) = 0
=> \(\orbr{\begin{cases}x^7=0\\x^2-64=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=64\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=8^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm8\end{cases}}\)
Vậy \(x\in\left\{0;8;-8\right\}\)là giá trị cần tìm hay có 3 số x thỏa mãn bài toán
\(x^9=64x^7\)
\(\Rightarrow\)\(64x^7=x^9\)
\(\Rightarrow\)\(x^9\div x^7=64\)
\(\Rightarrow\)\(x^2=64\)
\(\Rightarrow\)\(x^2=\left(\pm8\right)^2\)
\(\Rightarrow\)\(x=\pm8\)
Có 2 số x thỏa mãn.
a. Vì Ay // BC => góc yAC = góc ACB (sole trong)
góc yAx = góc ABC (đòng vị)
Mà góc ABC = góc ACB => góc yAC = góc yAx => Ay là phân giác góc CAx
b. Vì AD là phân giác góc trong BAC , Ay là phân giác góc ngoài CAx
=> Ay vuông góc với AD ( tính chất phân giác trong và ngoài )
Mà Ay // BC => góc yAD = góc ADB ( sole trong) => AD vuông góc với BC
#HT#