K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a) (x - 2y) (x2 - 2xy + y2)

= (x - 2y) (x - y)2

= x2 - xy - 2xy + 2y2

= (x2 - xy) - (2xy - 2y2)

= x (x - y) - 2y (x - y)

= (x - y) (x - 2y)

2a) x (x - 3) - y (3 - x)

= x (x - 3) + y (x - 3)

= (x - 3) (x + y)

b) 3x2 - 5x - 3xy + 5y

= (3x2 - 3xy) - (5x - 5y)

= 3x (x - y) - 5 (x - y)

= (x - y) (3x - 5)

3) 12x (3 - 4x) + 7 (4x - 3) = 0

12x (3 - 4x) - 7 (3 - 4x) = 0

(3 - 4x) (12x - 7) = 0

=> 3 - 4x = 0 hoặc 12x - 7 = 0

* 3 - 4x = 0 => x = \(\frac{3}{4}\)

* 12x - 7 = 0 => x = \(\frac{7}{12}\)

Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)

26 tháng 10 2019

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

26 tháng 10 2019

Thay b = 2 - a vào phân tích ta được:

VT - VP = 4 (a - 1)^2 (a^6 - 6 a^5 + 36 a^4 - 104 a^3 + 176 a^2 - 160 a + 64) 

26 tháng 10 2019

Ta có:

x2 - 4y2 - 3x - 6xy

= (x - 2y)(x + 2y) - 3x(x + 2y)

= (x - 2y - 3x)(x + 2y)

= (-2x - 2y)(x + 2y)

= -2(x + y)(x + 2y)

25 tháng 10 2019

\(=\left(x-3\right)\left(x^2+1-x^2+1\right)\)

\(=\left(x-3\right).2\)

Học tốt

25 tháng 10 2019

\(\left(x^2+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2-1\right)\)

\(\left(x-3\right)\left(x^2+1-x^2-1\right)\)

\(\left(x-3\right)2\)

25 tháng 10 2019

cái này xảy ra khi a=b=c=2 

25 tháng 10 2019

câu 1 là phương trình nghiệm nguyên hả bạn 

26 tháng 10 2019

làm là được rồi bạn ạ

cô ra đề thế biết làm gì