cho đa thức f(x) thỏa mãn: (x-2).f(x+1)=(x^2-9).f(x). c/m rằng đa thức f(x) có ít nhất 4 nghiệm
giải chi tiết ra thì cho like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M (x) = -2020 - x^2 = -( 2020 + x^2 )
Mà x^2 \(\ge\)0 => 2020 + x^2 > 0
=> M(x) = - ( 2020 + x^2 ) < 0
Do đo M(x) không có nghiệm
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2016}\right)\)
\(=\left(1-\frac{1}{\frac{2.3}{2}}\right)\left(1-\frac{1}{\frac{3.4}{2}}\right)...\left(1-\frac{1}{\frac{2016.2017}{2}}\right)\)
\(=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)...\left(1-\frac{2}{2016.2017}\right)\)
\(=\frac{2.3-2}{2.3}.\frac{3.4-2}{3.4}...\frac{2016.2017-2}{2016.2017}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{2015.2018}{2016.2017}\)
\(=\frac{1}{3}.\frac{2018}{2016}=\frac{2018}{6048}\)
a.*] Ta có ;góc DAC = góc DAB + góc BAC = 90độ + góc BAC
góc BAE = góc CAE + góc BAC = 90độ + góc BAC
\(\Rightarrow\) góc DAC = góc BAE \((1)\)
Xét tam giác DAC và tam giác BAE có
AD = AB [ vì tam giác ABD cân ]
góc DAC = góc BAE [ theo \((1)\)]
AC = AE [ vì tam giác ACE cân ]
Do đó ; tam giác DAC = tam giác BAE [ c.g.c ]
\(\Rightarrow\)CD = EB [ cạnh tương ứng ]
*]Gọi I , O lần lượt là giao điểm của CD với EB và AB với DC
Xét tam giác AOD vuông tại A ta có
góc D + góc AOD = 90độ
mà góc D = góc ABE [ vì tam giác DAC = tam giác BAE ] hay góc D = góc OBI
góc AOD = góc IOB [ đối đỉnh ]
\(\Rightarrow\)góc OBI + góc IOB = 90độ \((2)\)
Xét tam giác IOB có
góc OBI + góc IOB + góc OIB = 180độ
\(\Rightarrow\)góc OIB = 180độ - 90độ [ theo \((2)\)]
\(\Rightarrow\)góc OIB = 90độ
\(\Rightarrow\)OI vuông góc với BE
mà I là gđ của CD và EB
\(\Rightarrow\)CD vuông góc với BE
Ta có: AB < AC => AH < HC ( quan hệ đường xiên và hình chiếu )
=> HD = HA
=> HD < HC ; D khác A ; D thuộc AC
=> D nằm giữa H và C
tự kẻ hình nha
a) xét tam giác BAN và tam giác BAP có
AB chung
BAN=BAP(=90 độ)
NA=AP(gt)
=> tam giác BAN= tam giác BAP(cgc)
=> BNA=BPA(hai góc tương ứng)
=> tam giác BNP cân B=> BN=BP
b) xét tam giác BMN và tam giác BCP có
NB=BP(cmt)
BMN=BCP(=90 độ)
MBN=CBP( đối đỉnh)
=> tam giác BMN= tam giác BCP(ch-gnh)
c) từ tam giác BAN=BAP=> NBA=PBA( hai cạnh tương ứng)
từ tam giác BMN= tam giác BCP=> MB=BC( hai cạnh tương ứng)
xét tam giác BMA và tam giác BCA có
MB=BC(cmt)
MBA=CBA(=CBP+PBA)
AB chung
=> tam giác BMA= tam giác BCA(cgc)
=> MAB=CAB(hai góc tương ứng)
=> AB là p/g của MAC
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
Mình chỉ tìm đc 3 nghiệm.
+) Với x = 2
\(\left(2-2\right).f\left(2+1\right)=\left(2^2-9\right)f\left(2\right)\)
=> \(f\left(2\right)=0\)
+) Với x = 3
\(\left(3-2\right).f\left(3+1\right)=\left(3^2-9\right)f\left(3\right)\)
=> \(f\left(4\right)=0\)
+) Với x = -3
\(\left(-3-2\right).f\left(-3+1\right)=\left(\left(-3\right)^2-9\right)f\left(-3\right)\)
=> \(f\left(-2\right)=0\)
=> Đa thức có ít nhất 3 nghiệm
4 nghiệm nghe