K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

a) xét tam giác BAD và tam giác BED có

BAD=BED(=90 độ)

B1=B2(gt)

BD chung

=> tam giác BAD= tam giác BED(ch-gnh)

=> AD=ED( hai cạnh tương ứng)

b) xét tam giác ADF và tam giác EDC có

DAF=DEC(=90 độ)

ADF=EDC( đối đỉnh )

AD=ED(cmt)

=> tam giác ADF= tam giác EDC(gcg)

=> DF=DC( hai cạnh tương ứng)

c) nhầm rồi, phải là tam giác FDC cân nha

vì DF=DC(cmt)=> tam giác FDC cân tại D

23 tháng 6 2020

thiếu đề bạn ơi, thiếu các đa thức

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên
5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

18 tháng 6 2020

Đính chính . Em viết sai điều kiện ạ. 

Đúng phải là a#-11/4 và b#11/4 

I.TRẮC NGHIỆMCâu 1: Hệ số của đơn thức -5\(x^2\) \(y^7\) là:A. -5           B.-70            C.5             D.-5/14Câu 2:Chọn khẳng định đúng trong các khẳng định sau:A. Đơn thức \(3x^2y\) và \(-3xy^2\) đồng dạng.B.Đơn thức \(-3x^2y\) và \(3xy^2\) đồng dạng.C.Đơn thức \(3x^2y\) và \(-3x^2y\) đồng dạng.D.Đơn thức \(3x^2y\) và \(3xy^2\) đồng dạng.Câu 3: Bậc của đa thức +\(x^3y^4-3x^6+2y^5\):A.18           B.5       ...
Đọc tiếp

I.TRẮC NGHIỆM

Câu 1: Hệ số của đơn thức -5\(x^2\) \(y^7\) là:

A. -5           B.-70            C.5             D.-5/14

Câu 2:Chọn khẳng định đúng trong các khẳng định sau:

A. Đơn thức \(3x^2y\) và \(-3xy^2\) đồng dạng.

B.Đơn thức \(-3x^2y\) và \(3xy^2\) đồng dạng.

C.Đơn thức \(3x^2y\) và \(-3x^2y\) đồng dạng.

D.Đơn thức \(3x^2y\) và \(3xy^2\) đồng dạng.

Câu 3: Bậc của đa thức +\(x^3y^4-3x^6+2y^5\):

A.18           B.5           C.6                 D.7

Câu 4: Nếu \(\Delta ABC\) có AB=6cm; BC=7cm;AC=5cm thì:

A.góc A< góc C< góc B           B. góc A> góc C> góc B         C. góc C< góc A< góc B             D.góc A> góc B> góc C

Câu 5: \(\Delta ABC\) có 3 đường trung tuyến AD;BE;CF và G là trọng tâm. Khi đó:

A. 3GB=GA          B.CF=3GC             C.BG=CE               D.AD=3/2GA

II.TỰ LUẬN

Câu 6:Điểm kiểm tra toán học kỳ II của một số học sinh lớp 7A được ghi lại trong bảng sau: 

8          7            5              6              7             8              9               8             6        10

6          8             7             8              4             5               6                10          7         8

a, Lập bảng tần số

b, Tính số TBC (làm tròn đến chứ số thập phân thứ nhất)

Câu 7: Cho hai đa thức \(A(x)=-3x^3+2x-3x^3+1;B(x)=2x^2+3x^3-2x-5\)

a, Sắp xếp các hạng tử của hai đa thức trên theo lũy thừa giảm dần của biến.

b, Tính Q(x) =A(x)+B(x)

c, Chứng tỏ rằng đa thức Q(x) không có nghiệm.

Câu 8: Cho \(\Delta ABC \) vuông tại A , có AB=9cm;AC=12cm.

a, Tính BC

b, Tia phân giác của góc B cắt cạnh AC tại D, kẻ \(DM \bot BC \) tại M .Chứng minh \(\Delta ABD= \Delta MBD\)

c, Gọi gia điểm của DM và AB là E. Chứng minh \(\Delta BEC\) cân.

_____Gấp____

 

 

1
6 tháng 7 2020

I,Trắc nghiệm 

Câu 1 ; A

Câu 2 ; C

Câu 3 ; D

Câu 4 ; B

Câu 5 ; D

II,Tự luận

Câu 6

a]

Giá trị [ x ]45678910 
Tần số [ n ]1244612N=20


b] \(\frac{4.1+5.2+6.4+7.4+8.6+9.1+10.2}{20}=1,2\)

Câu 7

a.

\(A(x)=-3x^3+2x-3x^3+1\)

\(=-6x^3+2x+1\)

\(B(x)=2x^2+3x^3-2x-5\)

\(=3x^3+2x^2-2x-5\)

b.\(Q(x)=A(x)+B(x)\)

\(\Rightarrow Q(x)=(-6x^3+2x+1)+(3x^3+2x^2-2x-5)\)

\(=(-6x^3+3x^3)+2x^2+(2x-2x)+(1-5)\)

\(=-3x^3+2x^2-4\)

c.Ta có ;

\(Q(x)=-3x^3+2x^2-4=0\)

\(\Rightarrow-3x^3+2x^2=4\)

\(\Rightarrow x^2(-3x+2)=4\)

\(\Rightarrow\)Đa thức Q[x] ko có nghiệm

Câu 8

A B C E D M

a.Áp dụng tính chất Py-ta-go vào tam giác vuông ABC có

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2=9^2+12^2\)

\(\Rightarrow BC^2=225\)

\(\Rightarrow BC=15\)cm

Vậy BC = 15cm

b.Xét hai tam giác vuông ABD và tam giác vuông MBD có

                 góc BAD = góc BMD = 90độ

                 cạnh BD chung

                 góc ABD = góc MBD [ vì BD là phân giác góc B ]

Do đó ; tam giác ABD = tam giác MBD [ cạnh huyền - góc nhọn ]

c.Xét hai tam giác vuông ADE và tam giác vuông MDC có 

              góc DAE = góc DMC = 90độ

              AD = MD [ vì tam giác ABD = tam giác MBD theo câu b ]

             góc ADE = góc MDC [ đối đỉnh ]

Do đó ; tam giác ADE = tam giác MDC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)AE = MC [ cạnh tương ứng ]

mà AB = MB [ vì tam giác ABD = tam giác MBD theo câu b ]

\(\Rightarrow\)AE + AB = MC + MB 

\(\Rightarrow\)BE          = BC

Vậy tam giác BEC là tam giác cân tại B 

Chúc bạn học tốt nhé 

nhớ kết bạn với mk nha