K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

tự kẻ hình nha

a) xét tam giác AMN và tam gáic CEN có

AN=NC(gt)

MN=NE(gt)

ANM=CNE( đối đỉnh)

=> tam giác AMN= tam giác CEN(cgc)

=> AM=CE(hai cạnh tương ứng) mà AM=MB=> MB=CE

=> CEN=AMN(hai góc tương ứng)

mà CEN so le trong với AMN mà A,M,B thẳng hàng=> MB//CE

c) từ MB//CE=> BMC=MCE( so le trong)

xét tam giác BMC và tam gíac ECM có

MC chung

BMC=MCE(cmt)

MB=CE(cmt)

=> tam gíac BMC= tam giác ECM(ccg)

d) từ tam giác BMC= tam giác CEM=> BCM=EMC( hai góc tương ứng), ME=BC( hai cạnh tương ứng)

mà BCM so le trong với EMC=> MN//BC

vì MN=NE mà ME=BC(cmt)

=> BC=2MN=> MN=1/2BC

19 tháng 6 2020

tự kẻ hình nha

đặt AM là tia phân giác của BAC

xét tam giác ABM và tam giác ACM có

BAM=CAM(gt)

AB=AC(gt)

ABC=ACB(gt)

=> tam giác ABM= tam giác ACM(gcg)

=> BM=CM(hai cạnh tương ứng)

=> M là trung điểm của BC=> AM là trung tuyến

vì I là trung điểm AB=> CI là trung tuyến

vì BD giao AM tại K mà BD, AM là trung tuyến=> K là trọng tâm

mà CI là trung tuyến => K thuộc CI=> I,K,C thẳng hàng

19 tháng 6 2020

B C A M D E

Giả sử cho tam giác ABC cân tại A, M là trung điểm của BC; từ M kẻ MD,ME lần lượt vuông góc với AB,AC tại D,E.

Bây giờ ta cần chứng minh MD=ME

Bài làm:

Vì M là trung điểm của BC

=> AM là trung tuyến của tam giác ABC; mà tam giác ABC cân tại A

=> AM đồng thời là đường phân giác của tam giác ABC

=> \(\widehat{BAM}=\widehat{MAC}\)(hoặc bạn có thể chứng minh \(\Delta AMB=\Delta AMC\left(c.c.c\right)\))

\(\Delta AMD=\Delta AME\left(c.h-g.n\right)\)

vì: \(\hept{\begin{cases}AMchung\\\widehat{BAM}=\widehat{MAC}\left(cmt\right)\end{cases}}\)

=> MD=ME

=> Trung điểm của canh đáy của tam giác cân cách đều 2 canh bên của tam giác

=> đpcm

Học tốt!!!!

19 tháng 6 2020

đặt tam giác ABC cân tại A và có M là trung điểm của BC, tự vẽ hình nha

xét tam giác ABM và tam giác ACM có

AB=AC(gt)

ABC=ACB(gt)

BM=CM(gt)

=> tam giác ABM= tam giác ACM(cgc)

=>BAM=CAM( hai góc tương ứng)

=> AM là phân giác của BAC=> M thuộc tia phân giác của BAC

=> M cách đều hai cạnh bên của tam giác

19 tháng 6 2020

Giá trị trung bình các giá trị trong bảng là : 

( 115 + 121 ) : 2 = 118

( 122 + 131 ) : 2 = 126, 5

( 132 + 141 ) : 2 = 136, 5

( 142 + 151 ) : 2 = 146, 5

Vậy ta có bảng mới như sau : 

Chiều caoTần số
11816
126, 522
136, 538
146, 524

X = \(\frac{118\cdot16+126,5\cdot22+136,5\cdot38+146,5\cdot24}{16+22+38+24}=\frac{13374}{100}=133,74\)

19 tháng 6 2020

\(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)

\(\Leftrightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)

\(\Leftrightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)

\(\Leftrightarrow\left(2018-x\right).\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)

\(\Leftrightarrow2018-x=0\)

\(\Leftrightarrow x=2018\)

Vậy \(x=2018\)

Dễ dàng :v

Có \(\frac{55-x}{1963}+\frac{50-x}{1968}+\frac{45-x}{1973}+\frac{40-x}{1978}+4=0\)

\(\Rightarrow\left(\frac{55-x}{1963}+1\right)+\left(\frac{50-x}{1968}+1\right)+\left(\frac{45-x}{1973}+1\right)+\left(\frac{40-x}{1978}+1\right)=0\)

\(\Rightarrow\frac{2018-x}{1963}+\frac{2018-x}{1968}+\frac{2018-x}{1973}+\frac{2018-x}{1978}=0\)

\(\Rightarrow\left(2018-x\right)\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)=0\)

Mà \(\Rightarrow\left(\frac{1}{1963}+\frac{1}{1968}+\frac{1}{1973}+\frac{1}{1978}\right)>0\Rightarrow2018-x=0\)

\(\Rightarrow x=2018-8=2018\)

Vậy x = 2018