Cho tam giác ABC vuông tại A,đường phân giác thuộc cạnh huyềnchia cạnh huyền thành 2 đoạn theo tỉ số 3/4 biet BC=10cm
a) Tính AB,AC=?
b) Kẻ đường cao AH.Tinh AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuy phải ôn thi
nhưng hi vọng VN sẽ ko thua
ai đăng nội quy là phản quốc
VN vô địch
ĐKXĐ: \(\hept{\begin{cases}6+x\ge0\\198+x+2y\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-6\\2y\ge-198-x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\2y\ge198+6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-6\\y\ge-96\end{cases}}\)
Áp dụng bđt Bunhiacopxki ta được
\(A=\sqrt{6+x}+\sqrt{198+x+2y}\le\sqrt{\left(1^2+1^2\right)\left(\sqrt{\left(6+x\right)^2}+\sqrt{\left(198+x+2y\right)^2}\right)}\)
\(=\sqrt{2\left(6+x+198+x+2y\right)}\)
\(=\sqrt{2\left(204+2x+2y\right)}\)\(\le\sqrt{2\left(204+2.10\right)}\)
\(=\sqrt{448}\)
Nên \(A\le\sqrt{448}\)
Dấu "=" xảy ra khi \(\frac{a}{c}=\frac{b}{d}\)và \(x+y=10\)
hay \(\frac{6+x}{1}=\frac{198+x+2y}{1}\)
\(\Leftrightarrow6+x=198+x+2y\)
\(\Leftrightarrow2y=-192\)
\(\Leftrightarrow y=-96\)
Kết hợp \(x+y=10\Rightarrow x=10-\left(-96\right)=106\)
Vậy \(A_{max}=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
P/S : Lần sau những kẻ ngu mà tỏ ra mình giỏi thì hãy rút kinh nghiệm ...
\(A=\sqrt{6+x}+\sqrt{198+x+2y}\)
\(\Leftrightarrow A^2=\left(\sqrt{6+x}+\sqrt{198+x+2y}\right)^2\)
Áp dụng BĐT bunhiacopxki ta có:
\(A^2=\left(\sqrt{6+x}+\sqrt{198+x+2y}\right)^2\le\left(1+1\right)\left(6+x+198+x+2y\right)=2.\left(2x+2y+204\right)\)
\(\le2.\left(20+204\right)=448\)
\(\Leftrightarrow A\le\sqrt{448}\)
\(A=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x+y=10\\\frac{1}{6+x}=\frac{1}{198+x+2y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=10\\6+x=198+x+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=10\\192+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
Vậy \(A_{max}=\sqrt{448}\Leftrightarrow\hept{\begin{cases}x=106\\y=-96\end{cases}}\)
P/S: mới lớp 8, sai sót xin bỏ qua~