Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M\)\(=\)\(313\) \(\times\) \(\frac{4}{417}\) \(\times\) \(\frac{1}{762}\) \(-\) \(\frac{4}{417}\) \(\times\) \(\frac{1}{762}\) \(-\) \(\frac{1}{139}\) \(\times4\frac{761}{762}\)\(+\frac{1}{139}\times5\)
\(M=\)\(\frac{4}{417}\times\frac{1}{762}\times312\)\(-\frac{1}{139}\left(4\frac{761}{762}-5\right)\)
\(M=\frac{-416}{139}\times\frac{-1}{762}\)\(-\frac{1}{139}\times\frac{-1}{762}\)
\(M=\frac{-1}{762}\left(\frac{-416}{139}-\frac{1}{139}\right)\) \(=\frac{415}{105918}\)

các bạn trả lời nhanh cho mình nhé để mình còn nộp cho cô đấy
trong phần luyện tập của tỉ lệ nghịch thuận có nhé
Chúc bạn học tốt

Đề sai nha nếu đề bài không cho \(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2020}}\) bằng bao nhiêu thì sẽ không thể chứng minh đc xem lại đề nha và sửa cái phần CMR đi
Chúc bạn học tốt

Bg
Ta có n không chia hết cho 2 và 3 (n \(\inℤ\))
=> n không chia hết cho 6
Vì n không chia hết cho 6 và 2 và 3 nên n chia 6 dư 1 và chia 6 dư 5.
=> n có dạng 6x + 1 hoặc 6x + 5 (với x \(\inℤ\))
Xét n = 6x + 1:
=> 4.(n2) + 3n + 5 = 4.(n2) + 3(6x + 1) + 5
Vì n chia 6 dư 1 nên n2 chia 6 dư 1 => n2 có dạng 6x + 1 luôn
= 4(6x + 1) + 3(6x + 1) + 5
= 24x + 4 + 18x + 3 + 5
= 24x + 18x + (4 + 3 + 5)
= 24x + 18x + 12
Vì 24x \(⋮\)6; 18x \(⋮\)6 và 12 \(⋮\)6
Nên 24x + 18x + 12\(⋮\)6
=> 4.(n2) + 3n + 5 \(⋮\)6
=> ĐPCM

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{2}-\frac{1}{3}+...-\frac{1}{x+1}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2x-2}{2x+2}=\frac{2}{2013}\left(\text{vô nghiệm}\right);\frac{1}{3}>\frac{2}{2013}\text{ do đó vô nghiệm}\left(\text{ngắn hơn :))}\right)\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x+\left(x+1\right)}=\frac{2}{2013}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{2013}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2}{2013}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2}{2013}\left(vl\right)\)
=> Bt trên có x vô nghiệm

Ta có :
\(\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)

Đặt \(A=\left|x-3\right|+\left|x-6\right|-2\)
\(\Leftrightarrow A=\left|x-3\right|+\left|-\left(x-6\right)\right|-2\)
\(\Leftrightarrow A=\left|x-3\right|+\left|6-x\right|-2\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta được :
\(A=\left|x-3\right|+\left|6-x\right|-2\ge\left|x-3+6-x\right|-2=\left|3\right|-2=3-2=1\)
Đẳng thức xảy ra khi \(ab\ge0\)
\(\Leftrightarrow\left(x-3\right)\left(6-x\right)\ge0\)
\(\Leftrightarrow3\le x\le6\)
Vậy AMin = 1 khi \(3\le x\le6\)

a) Xét tam giác ABD và tam giác HBD có :
góc ABD = góc HBD (BD là tia pg)
góc BAD = góc BHD=90 độ (gt)
BD là cạnh chung
=> Tam giác ABD = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )
b) Xét tam giác DHC có :
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD