cho x,y là các số thực thỏa mãn
\(x^2+y^2=1\)
tìm GTNN của
\(xy\sqrt{3}+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a bạn giản ước đì rồi táchr a nhé
b) Ta có (x+y)2>=0
=>x2+y2+2xy>=0
=>x2+y2>= -2xy
=> x2+y2+x2+y2 >=x2+y2-2xy=(x-y)2=1
=>2x2+2y2>=1
=>2x2+2y2+2>=3
=> \(\frac{2x^2+2y^2+2}{4}>=\frac{3}{4}\)
=>\(\frac{x^2+y^2+1}{2}>=\frac{3}{4}\)
Mà (x-y)2=1 => x2+y2-2xy=1
=>x2+y2-1=2xy
=.\(xy=\frac{x^2+y^2-1}{2}\)
=> \(xy+1=\frac{x^2+y^2-1}{2}+1=\frac{x^2+y^2+1}{2}\)
=> xy+1>=3/4