Cho đa thức f(x) thỏa mãn f(x) + x.f(-x) = x + 2015 với mọi giá trị của x. Tính f(-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x) = x2 + 5x4 - 3x3 + x2 - 4x4 + 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + ( x2 + x2 ) - x + 5
= x4 + 2x2 - x + 5
B(x) = x - 5x3 - x2 - x4 + 5x3 - x2 - 3x + 1
= -x4 + ( 5x3 - 5x3 ) + ( -x2 - x2 ) + ( -3x + x ) + 1
= -x4 - 2x2 - 2x + 1
M(x) = A(x) + B(x)
= x4 + 2x2 - x + 5 + ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 - x4 - 2x2 - 2x + 1
= -3x + 6
N(x) = A(x) - B(x)
= x4 + 2x2 - x + 5 - ( -x4 - 2x2 - 2x + 1 )
= x4 + 2x2 - x + 5 + x4 + 2x2 + 2x - 1
= 2x4 + 4x2 + x + 4
M(x) = 0 <=> -3x + 6 = 0
<=> -3x = -6
<=> x = 2
Vậy nghiệm của M(x) là 2
a, Xét Δ DXY và Δ DEY :
\(\widehat{DYX}\)= \(\widehat{DYE}\)(gt)
YE = YX (gt)
DY là cạnh chung
=> Δ DXY = Δ DEY ( c - g - c )
=> DX = DE ( 2 cạnh tương ứng )
b, Xét Δ ZDE và Δ MDX ta có :
\(\widehat{ZED}\)= \(\widehat{DXM}\)(= 90 độ )
DX = DE ( chứng minh trên )
\(\widehat{MDX}\)=\(\widehat{ZDE}\)( 2 góc đối đỉnh )
=> Δ ZDE = Δ MDX ( g - c - g )
=> EZ = DM ( 2 cạnh tương ứng )
Bài làm:
a) Vì tam giác ABC vuông tại A nên áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
b) \(\Delta MAB=\Delta MCD\left(c.g.c\right)\)
vì: \(MA=MC\)(giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(MB=MD\)(giả thiết)
\(\Rightarrow\widehat{MCD}=\widehat{MAB}=90^0\)
=> \(CD\perp AD\)
Còn phần c mình nghĩ bạn nên sửa lại đề nhé!
Câu 1 : M(x) = 6x3 + 2x4 - x2 + 3x2 - 2x3 - x4 + 1 - 4x3
= ( 6x3 - 2x3 - 4x3 ) + ( 2x4 - x4 ) + ( 3x2 - x2 ) + 1
= x4 + 2x2 + 1
Có : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\Rightarrow2x^2\ge0\)
=> \(x^4+2x^2+1\ge1>0\forall x\)
=> M(x) vô nghiệm ( đpcm )
Câu 2 : A(x) = m + nx + px( x - 1 )
A(0) = 5 <=> m + n.0 + p.0( 0 - 1 ) = 5
<=> n + 0 + 0 = 5
<=> m = 5
A(1) = -2 <=> 5 + 1n + 1p( 1 - 1 ) = -2
<=> 5 + n + 0 = -2
<=> 5 + n = -2
<=> n = -7
A(2) = 7 <=> 5 + (-7) . 2 + 2p( 2 - 1 ) = 7
<=> 5 - 14 + 2p . 1 = 7
<=> -9 + 2p = 7
<=> 2p = 16
<=> p = 8
Vậy A(x) = 5 + (-7)x + 8x( x - 1 )
- Với x = 0 ta có:
0.P(0) - (0-3)P(0-1) = 0
suy ra: P (-1) = 0
suy ra P(x) có 1 nghiệm x = 0
- Với x = 3 ta có:
3.P(3) - (3-3)P(3-1) = 0
suy ra: P (3) = 0
suy ra P(x) có 1 nghiệm x = 3
Vậy đa thức P(x) có ít nhất 2 nghiệm.
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1