K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Tự vẽ hình nha bạn

a)Xét tam giác ABC có P là trung điểm của  AB

N là trung điểm của AC

=>NP là đường trung bình trong tam giác ABC(định nghĩa đường trung bình trong tam giác)

=>PN//BC(tính chất đường trung bình trong tam giác)

Xét tứ giác PCFN có:

PC//NF(gt)

PN//CF(PN//BC;F thuộc BC)

=>Tứ giác PCFN là hình bình hành

Vậy tứ giác PCFN là hình bình hành (đpcm)

b) xét tứ giác BDFN có:

BN//DF(gt)

NF//BD(gt)

=>Tứ giác BDFN là hình bình hành

Vậy tứ giác BDFN là hình bình hành (đpcm)

28 tháng 10 2019

đề kêu gì vậy em 

28 tháng 10 2019

đầu bài yêu cầu j vậy bạn:))))))

28 tháng 10 2019

x^2 -4x+5+y^2+2y

=(x^2-4x+4)+(y^2+2y +1)

=(x-2)^2+(y+1)^2

vì (x-2 )^2 >= 0

(y+1)^2>=0

=)) (x-2)^2 +(y+1)^2 >=0

dấu "=" xảy ra 

<=>x-2 =0 =)x=2

và y+1=0 =)y=-1

vậy..........

28 tháng 10 2019

H = x2 - 4x + 5 + y2 + 2y

H = ( x- 4x + 4) + ( y+ 2y + 1 ) 

H = ( x - 2 )2 + ( y + 1 )\(\ge\)0

Dấu = xảy ra\(\Leftrightarrow\)x - 2 = 0 và y + 1 = 0

                        \(\Rightarrow\)x = 2 và y = - 1

Vậy : Min H = 0 \(\Leftrightarrow\)x = 2 và y = - 1

28 tháng 10 2019

Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24

A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4

A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2  + 4 \(\ge\)\(\forall\)x;y;z

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)

Vậy MinA = 4 <=> x=  1 ; y = -3 và z = -1/3

28 tháng 10 2019

\(x^2+2y^2+9z^2-2x+12y+6z+24\)

\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)

\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)

Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)

Vậy................................

28 tháng 10 2019

điều kiện n phải lớn hơn hoặc bằng 5 thì mới chia hết

28 tháng 10 2019

Vẽ ra phía ngoài hình vuông 1 tam giác đều ABE. Vì EA=EB; MA=MB nên EM là đường trung trực AB, suy ra ˆMEB=30∘
VÌ ΔEBM=ΔCBM(c.g.c), suy raˆMCB=ˆMEB=30∘⇒ˆMCD=60∘(1).
Mặt khác, ΔAMD=ΔBMC(c.g.c), suy ra: MD=MC (2)
Từ (1) & (2) =>ΔMCDđều (đpcm)

A B C D J S M x y

tam giác AMD= BMC (c-g-c)

trên nửa mặt phẳng bờ AD chứa BC kẻ Ax và Dy sao cho Ax, Dy tạo vs AD các góc 15 độ, chứng cắt nhau tại J

Tam giác AJD có góc DAJ=JDA=15 

=> t,g ADJ cân tại J

ta có t.g AJDJ= ABM (g-c-g)

=>AJ=AM  

=> t.g AMJ cân tại A mà MAJ=60 (DAJ+JAM+MAB=90)

=> t.g ẠM đều 

=>JA=JM

ta có MJS=AMJ+MAJ=60+60=120 (góc ngoài t.g)

tương tự ta có SJD=30

vậy MJD=SJM+SJD=120+30=150

lại có t.g JDM có JD=JM (cùng= JA)

=> JDM cân tại J mà góc MJD=120

=>JDM=15

ta có góc ADJ + JDM+MDC=90

                 15+15+mdc=90

                              MDC =60

tam giác MCD cân mà có góc D =60 

=> MCD là tam giác đều

28 tháng 10 2019

Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MinA = 3 <=> x = -1

28 tháng 10 2019

\(2x^2+4x+5\)

\(=2\left(x^2+2x+\frac{5}{2}\right)\)

\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)

\(=2\left(x+1\right)^2+3\ge3\)

Dấu '' = '' xảy ra khi 

\(\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy............................

P/s : sai thì thôi nha

28 tháng 10 2019

A = 5x+ 5y+ 2xy + 8x + 16y + 5

A = ( x+ 2xy + y) + ( 4x+ 8x + 4 ) + ( 4y2 + 16y + 16 ) - 15

A = ( x + y )+ ( 2x + 2 )2 + ( 2y + 4 )2 - 15 \(\le\)-  15

Dấu = xảy ra \(\Leftrightarrow\)2x + 2 = 0 ; 2y + 4 = 0

                         \(\Rightarrow\)x = - 1 và y = - 2

Max A = - 15 \(\Leftrightarrow\)x = - 1 và y = - 2