Tìm \(n\in N\)để \(2n^4+3n^2+1\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




\(2x^3+5x^2-36=0\)
\(\Leftrightarrow2x^3+9x^2-4x^2+18x-18x-36=0\)
\(\Leftrightarrow\left(2x^3+9x^2+18x\right)-\left(4x^2+18x+36\right)=0\)
\(\Leftrightarrow x\left(2x^2+9x+18\right)-2\left(2x^2+9x+18\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2+9x+18\right)=0\)
\(TH1:x-2=0\Leftrightarrow x=2\)
\(TH2:2x^2+9x+18=0\)
Ta có: \(\Delta=9^2-4.2.18=-63< 0\)
Vậy TH2 ko có nghiệm
Vậy x = 2

x4y4 + 64
= x4y4 + 16x2y2 + 64 - 16x2y2
= (x2y2 + 8)2 - (4xy)2
= (x2y2 - 4xy + 8)(x2y2 + 4xy + 8)

a) Ta có:
\(\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+2}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3m+3}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(m+1\right)}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3}{2\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{3\left(8m+5\right)}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+15}{2\left(3m+2\right)\left(8m+5\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{24m+16}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8\left(3m+2\right)}{2\left(3m+2\right)\left(8m+5\right)}\)
\(=\frac{8}{2\left(8m+5\right)}=\frac{4}{8m+5}\left(đpcm\right)\)
b) Ta có: \(\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{3m+2}{\left(m+1\right)\left(3m+2\right)}+\frac{m+1}{\left(m+1\right)\left(3m+2\right)}\)
\(+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(3m+2\right)}\)
\(=\frac{4}{3m+2}\left(đpcm\right)\)

Ta có:\(2n^4+3n^2+1=\left(n^2\right)^2+2n^21^2+1^2+\left(n^4+n^2\right)=\left(n^2+1\right)^2+n^2\left(n^2+1\right)\)
\(=\left(n^2+1\right)\left(2n^2+1\right)\)
Vì \(\left(n^2+1\right)\left(2n^2+1\right)\)mà \(2n^2+1\ge n^2+1\)
\(\Rightarrow2n^2+1⋮n^2+1\)
\(\Rightarrow2n^2+2-1=2\left(n^2+1\right)-1⋮n^2+!\)
\(\Rightarrow-1⋮n^2+1\)
Mà \(n^2+1>0\)
\(\Rightarrow n^2+1=1\Rightarrow n=0\)