Tìm nghiệm của các đa thức :
a, \(M\left(x\right)=2x-\frac{1}{2}\)
b, \(N\left(x\right)=\left(x+5\right).\left(4x^2-1\right)\)
c, \(P\left(x\right)=9x^3-25x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà cậu. Đặt \(P\left(x\right)=x^2+2020=0\)
\(\Rightarrow x^2=0-2020=-2020\). Mà \(x^2\ge0\forall x\)
\(\Rightarrow x^2\ne2020\Leftrightarrow P\left(x\right)\) vô nghiệm
Đặt \(x^2+2020=0\)
\(\Leftrightarrow x^2=-2020\left(voli\right)\)
Vì \(x^2\ge0\forall x\in R;-2020< 0\)
Nên pt vô nghiệm
Vậy đa thức ko có nghiệm
cái này tam giác ABC phải vuông cân ở A nha -.-
tự kẻ hình nha
a) xét tam giác ABM và tam giác ACM có
AB=AC(gt)
ABC=ACB(gt)
AMB=AMC(=90 độ)
=> tam giác ABM= tam giác ACM(ch-gnh)
=> BAM=CAM( hai góc tương ứng)
b) từ tam giác ABM= tam giác ACM=> BM=CM( hai cạnh tương ứng)
=> MC=1/2BC=1/2*8=4(cm)
áp dụng định lý pytago vào tam giác vuông ACM có
AM^2+MC^2=AC^2=3^2+4^2=9+16=25=5^2
=> AC=5(AC>0)
B(x)=5x2+x-5
=>2B(x)=2(5x2+x-5)
=>2B(x)=10x2+2x-10
+)Ta có : C(x)-2B(x)=A(x)
=>C(x)=A(x)+2B(x)
A(x)+2B(x)=(3x3+3x2+2x-1)+(10x2+2x-10)
A(x)+2B(x)=3x3+3x2+2x-1+10x2+2x-10
A(x)+2B(x)=3x3+(3x2+10x2)+(2x+2x)+(-1-10)
A(x)+2B(x)=3x3+13x2+4x-11
=> C(x)=3x3+13x2+4x-11
\(A\left(x\right)=3x^3+3x^2+2x-1\)
\(B\left(x\right)=5x^2+x-5\)
Ta có : \(C\left(x\right)-2B\left(x\right)=A\left(x\right)\)
\(\Leftrightarrow C\left(x\right)-10x^2+2x-10=3x^3+3x^2+2x-1\)
\(\Leftrightarrow C\left(x\right)=-10x^2+2x-10-3x^3-3x^2-2x+1=0\)
\(\Leftrightarrow C\left(x\right)=-13x^2-9-3x^3=0\)
Vậy \(C\left(x\right)=-13x^2-9-3x^3\)
Để \(T_{max}=\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Thì \(2020+\left|x-2018\right|_{min}\)
và \(-2\left|x-2018\right|-2021_{max}\)
Mà \(\left|x-2018\right|\ge0\forall x\Rightarrow-2\left|x-2018\right|\le0\)
\(\Rightarrow T_{max}\Leftrightarrow\left|x-2018\right|_{min}\)
\(\Rightarrow T_{max}=-\frac{2021}{2020}\Leftrightarrow\left|x-2018\right|=0\Leftrightarrow x=0\)
\(\)
Ta thay các đơn thức trong M có biễn x + y
\(M=2x+2y+3xy\left(x+y\right)+5x^3y^2+5x^2y^3+2\)
\(\Rightarrow M=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)+2\)
Có \(x+y=0\) theo đề bài nên ta suy ra
\(2\left(x+y\right)=3xy\left(x+y\right)=5x^2y^2\left(x+y\right)=0\)
\(\Rightarrow M=0+0+0+2=2\) Vậy M = 2
câu 1 (có sai đề ko ?) vì có z nên khó tìm được x
câu 2 thì cứ biến z/5=2z/10 rồi áp dụng tính chất dãy tỉ số bằng nhau nên ta có được:
x+y+2z/2+3+10=10/15=2/3
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)