tìm số thực x, y thỏa mãn
x2 + 26y2 - 10xy -14x + 64y + 58 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\Leftrightarrow-4\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\left(x-2\right)\left(x-2-x-2\right)=0\)
\(\left(x-2\right)\left(-4\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(2x^2-x+5\)
\(=2\left(x^2-\frac{x}{2}+\frac{5}{2}\right)\)
\(2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}+\frac{39}{16}\right)\)
\(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{39}{16}\right]\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\)
Dấu '' ='' xảy ra
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2\Leftrightarrow x=\frac{1}{4}\)
Vậy........
\(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\frac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\frac{201}{2}\right)\)
\(=2\left[\left(x+10\right)^2-\frac{201}{2}\right]\)
\(=2\left[\left(x+10\right)^2\right]-201\ge-201\)
Vậy \(B_{min}=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
\(B=2x^2+40x-1\)\(=2\left(x^2+2.10x+100\right)-201\)
\(=2\left(x+10\right)^2-201\)
Vì \(2\left(x+10\right)^2\ge0\forall x\)=>\(2\left(x+10\right)^2-201\ge-201\forall x\)
hay \(B\ge-201\forall x\)
\(MinB=-201\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
câu a) mẫu chung: \(x^3x^2\left(x-1\right)^2\) hơi dài nên mk ko làm ^_^
b)
\(=\frac{xy\left(a-b\right)+\left(x-a\right)\left(y-a\right)b-\left(x-b\right)\left(y-b\right)a}{ab\left(a-b\right)}\)
\(=\frac{xya-xyb+bxy-abx-aby+a^2b-axy+axb+aby-ab^2}{ab\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)}{ab\left(a-b\right)}=1\)