Tìm x;y biết 2xy-3x+y=2
Mấy bạn jup mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ;
\(\frac{x+2}{x+3.2}=\frac{x+2}{x+6}=\frac{(x+6)-6+2}{x+6}=1-\frac{4}{x+6}\)
Để \(\frac{x+2}{x+3.2}\)là số nguyên thì \(x+6\inƯ_{(4)}\)
mà \(Ư_{(4)}=(4;1;-1;-4)\)
Ta có bảng sau ;
x+6 | 4 | 1 | -1 | -4 |
x | -2 | -5 | -7 | -10 |
Vậy để \(\frac{x+2}{x+3.2}\)là số nguyên thì \(x\in(-2;-5;-7;-10)\)
Học tốt
ta có \(\frac{a}{b}< \frac{c}{d}=>ad< bc=>ady< bcy=>ady+abx< bcy+abx\)
\(=>a\left(bx+dy\right)< b\left(ãx+cy\right)=>\frac{a}{b}< \frac{xa+yc}{xb+yd}\left(1\right)\)
ta lại có tương tự \(adx+cdy< bcx+cdy\)
\(=>d\left(ax+cy\right)< c\left(bx+dy\right)=>\frac{xa+yc}{xb+yd}< \frac{c}{d}\left(2\right)\)
từ 1 and 2 => dpcm
Bài làm:
\(x=\frac{a-4}{a}=1-\frac{4}{a}\)
Để x là số nguyên => \(\frac{4}{a}\inℤ\)
\(\Rightarrow4⋮a\Rightarrow a\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có:
\(x=\frac{a-4}{a}=1-\frac{4}{a}\)
Để x có GTN thì \(1-\frac{4}{a}\)phải có GTN
\(\Rightarrow\frac{4}{a}\)có GTN
\(\Rightarrow4⋮a\)
\(\Rightarrow a\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;4;-4\right\}\)nên \(a\in\left\{1;-1;4;-4\right\}\)
Vậy \(a\in\left\{1;-1;4;-4\right\}\)
Bài làm:
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow\frac{ad}{ac}< \frac{bc}{ac}\Leftrightarrow\frac{d}{c}< \frac{b}{a}\)
Học tốt!!!!
A B C H E F
Hình minh họa nhé !
a, Xét \(\Delta\)ABH và \(\Delta\)ACH ta có
AB = AC (gt)
^AHB = ^AHC = 90^0
AH chung
=> \(\Delta\)ABH = \(\Delta\)ACH (c.g.c) (1)
b, Vì (1) ta suy ra : BH = HC (tương ứng)
Ta có : \(BH=HC=\frac{BC}{2}=\frac{12}{2}=6\)cm
Áp dụng định lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(10^2=6^2+AH^2\)
\(100-36=AH^2\Leftrightarrow64=AH^2\Leftrightarrow AH=8\)cm
Tự xử c;d bn nhé !
Lâu rồi chưa làm dạng này có gì sai sót thì bạn comment xuống dưới nhé !
A H B C E F K
Lấy K đối xứng mới H qua B
Xét tam giác KAH có BK=BH; AF=FH nên BF là đường trung bình của tam giác HAH
\(\Rightarrow BF=\frac{AK}{2}\)
Tương tự \(HE=\frac{AC}{2}\)
Theo BĐT tam giác ta có được \(BF+HE=\frac{AC+AK}{2}>\frac{KC}{2}=\frac{KB+BC}{2}=\frac{BH+BC}{2}=\frac{\frac{1}{2}BC+BC}{2}=\frac{3}{4}BC\)
Vậy ta có đpcm
Bạn CTV gì đó ơi bạn ý nhờ làm câu d mà :)) Sao lại tự xử c,d được :V
a, xét tg BEM và tg CFM có : ^CFM = ^BEM = 90
^ABC = ^ACCB do tg ABC cân tại A (gt)
CM = BM do M là trung điểm của BC (gt)
=> tg BEM = tg CFM (ch-gn) (1)
b, (1) => CF = BE (đn)
AB = AC do tg ABC cân tại A (gt)
CF + AF = AC
BE + AE = AB
=> AF = AE
Bài giải
A B C M E F G
a, Xét 2 tam giác vuông BME và CMF có :
MB = MC ( AM là đường trung tuyến ) : cạnh huyền
\(\widehat{B}=\widehat{C}\) ( tam giác ABC cân ) : góc nhọn
\(\Rightarrow\text{ }\Delta BME =\Delta CMF ( ch-gn ) \) ( 1 )
b, Từ ( 1 ) => BE = CF ( 2 cạnh tương ứng )
Mà AB = AE + BE
AC = AF + CF
Mà BE = CF => AE = AF
c, Ta có :
\(AG=BG=\frac{2}{3}AM\text{ }\Rightarrow\text{ }\frac{AG+BG}{2}=\frac{\frac{2}{3}AM+\frac{2}{3}AM}{2}=\frac{\frac{4}{3}AM}{2}=\frac{3}{2}AM>BG\)
\(\Rightarrow\text{ }ĐPCM\)
a) Giả sử A,B,C cùng nhận giá trị âm => A.B.C nhận giá trị âm
Mà ta có: A.B.C = \(\left(-\frac{2}{3}x^2yz^2\right).\left(xy^2z^2\right)\left(-\frac{3}{5}x^3y^3\right)\)
= \(\left[-\frac{2}{3}\cdot\left(-\frac{3}{5}\right)\right]\left(x^2.x.x^3\right)\left(y.y^2.y^3\right).\left(z^2.z^2\right)\)
= \(\frac{2}{5}x^6y^6z^4\)nhận giá trị dương => điều giả sử là sai
=> A, V, C không thể cùng nhận giá trị âm
b) Ta có: |2x - 4| \(\ge\)0 \(\forall\)x
(y + 3)20 \(\ge\)0 \(\forall\)y
=> -12 - |2x - 4| - (y + 3)20 \(\le\)-12 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-4=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
Vậy MaxM = -12 khi x = 2 và y = -3
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
\(2xy-3x+y=2\)
\(\Leftrightarrow x\left(2y-3\right)+\frac{1}{2}\left(2y-3\right)=\frac{4}{3}\)
\(\Leftrightarrow6x\left(2y-3\right)+3\left(2y-3\right)=8\)
\(\Leftrightarrow\left(2y-3\right)\left(6x+3\right)=8\)
Lập bảng xét ước là xong bạn nhé !
2xy-3x+y=2
<=> 4xy-6x+2y=4
<=> 2y(2x+1)-3(2x+1)=1
<=> (2x+1)(2y-1)=1
\(\Rightarrow2x+1;2y-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
TH1: \(\hept{\begin{cases}2x+1=-1\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=-2\\2y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=0\end{cases}}}\)
TH2: \(\hept{\begin{cases}2x+1=1\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}2x=0\\2y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
Vậy có 2 cặp (x,y) thỏa mãn yêu cầu đề bài (-1;0);(0;1)