Phân tích thành nhân tử :
1) \(x^2-2x-4y^2-4y\)
2) \(x^2y+xy^2+x^2z+y^2z+2xyz\)
3) \(x^2-3x+2\)
4) \(x^4+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2m+1}{\left(m+1\right)\left(2m+1\right)}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2m+2}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2\left(m+1\right)}{\left(m+1\right)\left(2m+1\right)}\)
\(=\frac{2}{2m+1}=\frac{4}{4m+2}\left(đpcm\right)\)
b) \(\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{m+1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{m+2}{\left(m+1\right)\left(m+2\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4m+3}{\left(m+1\right)\left(4m+3\right)}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4m+4}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4\left(m+1\right)}{\left(m+1\right)\left(4m+3\right)}\)
\(=\frac{4}{4m+3}\left(đpcm\right)\)
Đổi \(15m/s=54km/h\)
Thời gian ô tô đi nửa đoạn đầu:
\(t_1=\frac{S_1}{v_1}=\frac{\frac{S}{2}}{54}=\frac{S}{108}\left(h\right)\)
Mặt khác,ta có:
\(S_2+S_3=\frac{S}{2}\)
\(\Leftrightarrow v_2\cdot t_2+v_3\cdot t_3=\frac{S}{2}\)
\(\Leftrightarrow v_2\cdot\frac{t'}{2}+v_3\cdot\frac{t'}{2}=\frac{S}{2}\)
\(\Leftrightarrow45t'+15t'=S\)
\(\Rightarrow t'=\frac{S}{60}\)
Ta có:
\(v_{tb}=\frac{S_1+S_2+S_3}{t_1+t_2+t_3}=\frac{S}{\frac{S}{108}+\frac{S}{60}}=\frac{270}{7}km/h\)
Đúng không ta ??
Câu hỏi của Khoa Nguyễn Đăng - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
\(a+b+c\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow ab+bc+ac=\frac{-a^2-b^2-c^2}{2}\)
\(\Rightarrow2\left(ab+bc+ac\right)^2=\frac{\left(a^2+b^2+c^2\right)^2}{2}\)(1)
Lại có : \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(=a^4+b^4+c^4+2\left(ab+bc+ac\right)^2-2abc\left(a+b+c\right)\)
\(=a^4+b^4+c^4+2\left(ab+bc+ac\right)^2\)( do a + b + c = 0 )
Thay vào ( 1 )
\(2\left(ab+bc+ca\right)^2=\frac{a^4+b^4+c^4}{2}+\left(ab+cb+ac\right)^2\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{a^4+b^4+c^4}{2}\)
\(\Rightarrowđpcm\)
Ta có:
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\) hay tam giác ABC đều.
a) \(x^2-4x-7=0\)
Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)
pt có 2 nghiệm:
\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)
\(\frac{a}{x+1}+\frac{b}{x-1}=\frac{5x+1}{x^2-1}\)
\(\Leftrightarrow\frac{a\left(x-1\right)+b\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{5x+1}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow ax-a+bx+b=5x+1\)
\(\Leftrightarrow x\left(a+b\right)-a+b=5x+1\)
\(\Rightarrow\hept{\begin{cases}a+b=5\\b-a=1\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)
a) \(2x^2+3x-8=0\)
Ta có: \(\Delta=3^2+4.2.8=73\)
pt có 2 nghiệm
\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)
d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
Đặt \(x^2+2x=t\)
\(pt\Leftrightarrow t^2-2t-3=0\)
Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)
pt trên có 2 nghiệm
\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)
\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)
\(\Rightarrow x\in\left\{-3;-1;1\right\}\)
c) \(x^4+8x^3+19x^2+12x=0\)
\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)
\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)
\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)
1) \(x^2-2x-4y^2-4y\)
\(=x^2-2x-4y^2-4y+2xy-2xy\)
\(=\left(-4y^2+2xy-4y\right)-\left(2xy-x^2+2x\right)\)
\(=2y\left(-2y+x-2\right)+x\left(-2y+x-2\right)\)
\(=\left(2y+x\right)\left(-2y+x-2\right)\)
3) \(x^2-3x+2\)
\(=x^2-2x-x+2\)
\(=x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-1\right)\left(x-2\right)\)