a+b+c = 1
CMR :
\(p=\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}+\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 ( của toán lớp 10 mà )
Ta có : ( P ) đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được :
5 = a . 42 + b . 4 + c
5 = 16a + 4b + c
-c = 16a + 4b - 5
=> c = -16a - 4b + 5 ( * )
( P ) có đỉnh là I(2;1)
=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\) ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 )
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 )
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\)
Thay a = 1 và b = -4 vào phương trình ( * ) ta được :
c = -16 . 1 - 4 .( -4 ) +5 = 5
vậy ( P ) là \(y=x^2-4x+5\)
bảng biến thiên :
bạn tự vẽ (P) nha , quá dễ mà
BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm
\(\left(m^2-1\right)x+2m=5x-2v6\)
\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)
\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)
\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)
Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)
\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)
Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)
Bài 3 :
a )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)
\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)
\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)
\(=16m^2-12m+36-16m^2-40m+8m+20\)
\(=-44m+56\)
phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow-44m+56\ge0\)
\(\Leftrightarrow-44m\ge-56\)
\(\Leftrightarrow m\le\frac{14}{11}\)
Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm ( m bé hơn hoặc bằng 14/11 nha )
b ) x1 = x2 có nghĩa là nghiệm kép nha ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy )
phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)
\(\Leftrightarrow-44m+56=0\)
\(\Leftrightarrow m==\frac{14}{11}\)
Học tốt !!!!!
\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
\(\sqrt{1+\frac{1}{a^2}}+\sqrt{1+\frac{1}{b^2}}+\sqrt{1+\frac{1}{c^2}}\ge\sqrt{\left(1+1+1\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{3^2+3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}=\sqrt{9+3}=\sqrt{12}=2\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c=\(\sqrt{3}\)
Đếm trên ngón tay bạn
1 ngón mà cho thêm 1 ngón nữa vào là 2
kết luận : 1 + 1 = 2
cho tam giác ABC vuông tại A. Vẽ các đường tròn O và i đi qua A và tiếp xúc với BC tại các điểm B và C. Gọi M là trung điểm của BC. Chứng Minh
a) Các đường tròn O và i tiếp xúc với nhau
b) AM là tiếp tuyến chung của hai đường tròn O và i
c) tam giác OMI vuông
d) BC là tiếp tuyến của đường tròn ngoại tiếp tam giác OMI.
ĐKXĐ: \(x\ne-3\)
\(x^2-6x+2=\sqrt{x+3}\)
\(\Leftrightarrow x^2-x-5x-3-1=\sqrt{x+3}\)
Đặt \(\sqrt{x+3}=t\).
Phương trình đã cho tương đương với: \(x^2-5x-1-t=t\)
\(\Leftrightarrow x^2-5x-1=0\).Đặt \(\Delta=b^2-4ac=\left(-5\right)^2-4.1.\left(-1\right)=29\)
Do \(\Delta>0\),phương trình có hai nghiệm phân biệt: \(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{5+\sqrt{29}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{5-\sqrt{29}}{2}\end{cases}}\) (không chắc nha)