cho hai số x,y khác 0. biết (x+y)^5=x^5+y^5.chứng tỏ rằng x và y là 2 số đối
Giúp mình vs cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định \(x\ge4,y\ge4\)
\(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)\)
\(\Leftrightarrow\frac{\sqrt{x-4}}{x}+\frac{\sqrt{y-4}}{y}=\frac{1}{2}\)
Ap dụng bất đẳng thức AM-GM ta có
\(\frac{\sqrt{x-4}}{x}+\frac{\sqrt{4\left(x-4\right)}}{x}\le\frac{4+\left(x-4\right)}{2\cdot2x}=\frac{1}{4}\)
\(\frac{\sqrt{y-4}}{y}+\frac{\sqrt{4\left(y-4\right)}}{y}\le\frac{4+\left(y-4\right)}{2\cdot2y}=\frac{1}{4}\)
\(\Rightarrow\frac{\sqrt{x-4}}{x}+\frac{\sqrt{y-4}}{y}\le\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=8\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\frac{100+x}{98}+\frac{100+x}{96}-\frac{100+x}{94}-\frac{100+x}{92}=0\)
\(\Rightarrow\left(100+x\right)\left(\frac{1}{98}+\frac{1}{96}+\frac{1}{94}+\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}+\frac{1}{94}+\frac{1}{92}\ne0\)
\(\Rightarrow100+x=0\)
\(\Rightarrow x=-100\)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
\(\Leftrightarrow\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}< \frac{1}{96}< \frac{1}{94}< \frac{1}{92}\)nên \(\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)< 0\)
Vậy \(x+100=0\Leftrightarrow x=-100\)
\(M=x^2+x+10\)
\(=x^2+x+\frac{1}{4}+\frac{39}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
Vậy \(M_{min}=\frac{39}{4}\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
\(M=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{39}{4}\)
\(M=\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)\(\Rightarrow M\ge\frac{39}{4}\)
Dấu "=" xảy ra: \(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)
\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcx+acy+abz=0\)
Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))
Từ (1) \(\Rightarrow bcx+acy+abz=0\)
Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)
Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)
\(=4\)
\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)
\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)
\(=-\frac{3}{2}\)
\(P\left(x\right)=4x^4+1\)
\(=4x^4+4x^2+1-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)\)
\(P\left(x\right)=4x^4+1\)
\(=\left(\sqrt{4}x^2\right)^2+1^2\)
\(=\left(2x^2\right)^2+1^2\)
\(=\left(2x^2+1\right)^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)