K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

😎😎🥺🥺😩😩😫😫🤭🤭

AH
Akai Haruma
Giáo viên
20 tháng 11 2023

Lời giải:

Theo bài ra ta có:

$a+b=120$

$a\times 0,5+b\times 3=180(1)$

Từ $a+b=120$ nhân 0,5 vào 2 vế ta có:

$a\times 0,5+b\times 0,5=120\times 0,5=60(2)$

Lấy phép tính (1) trừ phép tính (2) thì:

$b\times 3- b\times 0,5=180-60$

$b\times 2,5=120$

$b=120:2,5=48$

$a=120-b=120-48=72$

20 tháng 11 2023

Cách viết \(x\cdot\left(3,2-1,2\right)\) hay \(x\cdot\left[3.2+\left(-1,2\right)\right]\) đều đúng nhé bạn. Vì có dấu + trước ngoặc nên ta giữ nguyên dấu bên trong và được \(3,2-1,2\).

20 tháng 11 2023

Cách viết �⋅(3,2−1,2) hay �⋅[3.2+(−1,2)] đều đúng nhé bạn. Vì có dấu + trước ngoặc nên ta giữ nguyên dấu bên trong và được 3,2−1,2.

20 tháng 11 2023

Ông với Quang nghe như vài thế hệ mà chỉ cách nhau 5 tuổi, em xem lại đề hí

20 tháng 11 2023
   

Số tuổi của Quang 5 năm trước là:

(61−51):2=5 (tuổi)

Số tuổi của Quang hiện này là:

5+5=10 (tuổi)

Số tuổi của ông hiện nay là:

10+51=61 (tuổi)

Đáp số: ...

20 tháng 11 2023

Bài này áp dụng BĐT B.C.S là ra nhé

Ta có \(VT=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{b+c+a}=a+b+c=VP\) 

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)

(*) BĐT B.C.S phát biểu như sau:

 Cho \(2n\) số thực \(a_1,a_2,...,a_n,x_1,x_2,...,x_n\), trong đó \(a_i>0,\forall i\in\left\{1,2,...,n\right\}\). Khi đó ta có:

 \(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\) (*)

Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}\)

Trước tiên, ta chứng minh (*) đúng với \(n=2\). Thật vậy:

Với \(x,y\inℝ;a,b>0\), thì ta cần chứng minh 

\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

 \(\Leftrightarrow\dfrac{bx^2+ay^2}{ab}\ge\dfrac{\left(x+y\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(bx^2+ay^2\right)\ge ab\left(x+y\right)^2\)

\(\Leftrightarrow abx^2+a^2y^2+b^2x^2+aby^2\ge abx^2+aby^2+2abxy\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

 Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)

 Để chứng minh với \(n\ge3\) thì bạn chỉ cần dùng nhiều lần BĐT cho 2 phân thức là được.

 VD: \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y\right)^2}{a+b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

Vậy BĐT được chứng minh.

 

20 tháng 11 2023

Gọi hai số cần tìm là a và b. Theo đề bài, ta có các điều kiện sau: 1. Hiệu của hai số là 0,6: a - b = 0,6 2. Thương của hai số là 0,6: a / b = 0,6 Để giải hệ phương trình này, ta có thể sử dụng phương pháp thế hoặc phương pháp đại số. Sử dụng phương pháp thế, ta có: a = 0,6 + b Thay vào phương trình thứ hai: (0,6 + b) / b = 0,6 0,6 + b = 0,6b 0,6b - b = 0,6 0,6b = 0,6 b = 1 Thay b = 1 vào phương trình a = 0,6 + b: a = 0,6 + 1 a = 1,6 Vậy hai số cần tìm là a = 1,6 và b = 1.

20 tháng 11 2023

mình sẽ tích cho ai nhanh nhất

 

20 tháng 11 2023

Sửa lại đề chỗ kia là \(\dfrac{b}{a}\) chứ không phải \(\dfrac{b}{b}\) nhé.

Đặt \(\dfrac{a}{b}=t>0\) . Khi đó BĐT cần chứng minh tương đương:

\(t^2+\dfrac{1}{t^2}\ge t+\dfrac{1}{t}\) 

\(\Leftrightarrow t^2+\dfrac{1}{t^2}+2\ge t+\dfrac{1}{t}+2\)

\(\Leftrightarrow\left(t+\dfrac{1}{t}\right)^2\ge t+\dfrac{1}{t}+2\) (*)

Đặt \(u=t+\dfrac{1}{t}\left(u\ge2\right)\), khi đó (*) tương đương:

\(u^2-u-2\ge0\)

\(\Leftrightarrow u^2+u-2u-2\ge0\)

\(\Leftrightarrow u\left(u+1\right)-2\left(u+1\right)\ge0\)

\(\Leftrightarrow\left(u+1\right)\left(u-2\right)\ge0\) (luôn đúng vì \(u\ge2\))

Dấu "=" xảy ra \(\Leftrightarrow u=2\) \(\Leftrightarrow t+\dfrac{1}{t}=2\) \(\Leftrightarrow t=1\) \(\Leftrightarrow a=b\)

Vậy ta có đpcm.

 

20 tháng 11 2023

 Nãy mình nhìn nhầm đề, xin lỗi bạn nhiều. Cách trình bày vẫn như vậy nhé.

20 tháng 11 2023


 

20 tháng 11 2023
Để giải tổng của dãy số 6, 18, 54, ..., 39366, ta có thể sử dụng công thức tổng của dãy số hình học. Dãy số này có công bội là 3, tức là mỗi số trong dãy là bằng số trước đó nhân 3. Công thức tổng của dãy số hình học là: S = a * (r^n - 1) / (r - 1) Trong đó: - S là tổng của dãy số - a là số đầu tiên trong dãy (6) - r là công bội (3) - n là số lượng số trong dãy Để tính tổng của dãy số này, ta cần tìm số lượng số trong dãy (n). Ta có công thức tìm số lượng số trong dãy số hình học: n = log(r, (L/a)) + 1 Trong đó: - L là số cuối cùng trong dãy (39366) - a là số đầu tiên trong dãy (6) - r là công bội (3) Tính n: n = log(3, (39366/6)) + 1 n = log(3, 6561) + 1 n = log(3, 3^8) + 1 n = 8 + 1 n = 9 Thay n = 9 vào công thức tổng của dãy số hình học: S = 6 * (3^9 - 1) / (3 - 1) S = 6 * (19683 - 1) / 2 S = 6 * 19682 / 2 S = 118092 Vậy tổng của dãy số là 118092. ...  
AH
Akai Haruma
Giáo viên
20 tháng 11 2023

Lời giải:
Nếu $n$ chia hết cho $3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $A=10^n+18n-1=10^{3k}+18.3k-1=1000^k+54k-1$

Có:
$1000\equiv 1\pmod {27}\Rightarrow 1000^k\equiv 1^k\equiv 1\pmod {27}$

$54k\equiv 0\pmod {27}$

$\Rightarrow 1000^k+54k-1\equiv 1+0-1\equiv 0\pmod {27}$

Hay $A\equiv 0\pmod {27}(1)$

Nếu $n$ chia $3$ dư $1$. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+1}+18(3k+1)-1=1000^k.10+54k+17$

$\equiv 1^k.10+0+17=27\equiv 0\pmod {27}(2)$

Nếu $n$ chia $3$ dư $2$. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó:

$A=10^{3k+2}+18(3k+2)-1=1000^k.100+54k+35$

$\equiv 1^k.100+0+35=135\equiv 0\pmod {27}(3)$
Từ $(1); (2); (3)\Rightarrow A\vdots 27$ với mọi $n$ tự nhiên.

22 tháng 11 2023

Em cảm ơn thầy/cô nhiều ạ .

AH
Akai Haruma
Giáo viên
20 tháng 11 2023

Lời giải:
Vì tỉ số chiều dài và chiều rộng là $\frac{3}{7}$ nên gọi chiều dài là $a$ (m) thì chiều rộng là $\frac{3}{7}\times a$ (m) 

Diện tích: $a.\frac{3}{7}a=84$

$\Rightarrow a^2=196=14^2$

$\Rightarrow a=14$ (m) 

Vậy chiều dài là 14 m, chiều rộng là $14.\frac{3}{7}=6$ (m) 

Độ dài hàng rào bao quanh mảnh đất chính bằng chu vi mảnh đất và bằng: 
$2(14+6)=40$ (m)