K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

a, điều kiện xác định là \(x\ne2;x\ne-2;x\ne0\)

\(b,\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)

\(=\frac{x-2\cdot\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=-\frac{6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=-\frac{1}{x-2}=\frac{1}{2-x}\)

c, Để A>0 

mình làm hơi tắt nên chịu khó hiểu

1 tháng 11 2019

thank nha

1 tháng 11 2019

Ta co:\(P=-x^2+2x+5\)

\(P=-\left(x^2-2x+1\right)+6\)

\(P=-\left(x-1\right)^2+6\)

Do \(\left(x-1\right)^2\ge0\)\(\Rightarrow-\left(x-1\right)^2\le0\)

\(\Rightarrow P\ge6\)

Dau ''='' xay ra khi va chi khi

\(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vay MAX cua P=6 khi x=1

29 tháng 11 2019

Cảm mơn bạn nha

1 tháng 11 2019

\(x^2+y^2-4x-2\)

\(=x^2+y^2-4x+4-6\)

\(=\left(x^2-4x+4\right)+y^2-6\)

\(=\left(x-2\right)^2+y^2-6\ge-6\)

Xem lại đề nha, kết quả vẫn có thể âm mà

1 tháng 11 2019

 Sau Chiến tranh thế giới thứ hai, cao trào đấu tranh giải phóng dân tộc bùng nổ mạnh mẽ. Đến những năm 50, phần lớn các nước châu Á đã giành độc lập.

- Gần suốt nửa sau thế kỉ XX, tình hình châu Á không ổn định, bởi các cuộc chiến tranh xâm lược của các nước đế quốc, nhất là khu vực Đông Nam Á và Tây Á.

- Sau “chiến tranh lạnh”, ở một số nước châu Á đã xảy ra những cuộc cung đột tranh chấp biên giới, lãnh thổ, hoặc cá phong trào li khai với những hành động khủng bố tệ hại.

- Nhiều nước châu Á đạt được sự tăng trưởng nhanh chóng về kinh tế như Nhật Bản, Hàn Quốc, Trung Quốc, Sin-ga-po, Thái Lan..

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(\frac{-1}{z}\right)^3\)

\(\Leftrightarrow\frac{1}{x^3}+3\frac{1}{x^2}\frac{1}{y}+3\frac{1}{x}\frac{1}{y^2}+\frac{1}{y^3}=\frac{-1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3.\frac{1}{x}\frac{1}{y}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-3.\frac{1}{x}\frac{1}{y}\frac{-1}{z}\)

\(\Leftrightarrow\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)xyz=3.\frac{1}{x}\frac{1}{y}\frac{1}{z}.xyz\)

\(\Leftrightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)

1 tháng 11 2019

Ta có: \(\left(x+y\right)^5=x^5+y^5\)

\(\Leftrightarrow\left(x+y\right)^5-x^5-y^5=0\)

\(\Leftrightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5-x^5-y^5=0\)

\(\Leftrightarrow5x^4y+10x^3y^2+10x^2y^3+5xy^4=0\)

\(\Leftrightarrow\left(5x^4y+5xy^4\right)+\left(10x^3y^2+10x^2y^3\right)=0\)

\(\Leftrightarrow5xy\left(x^3+y^3\right)+10x^2y^2\left(x+y\right)=0\)

\(\Leftrightarrow5xy\left(x+y\right)\left(x^2-xy+y^2\right)+10x^2y^2\left(x+y\right)=0\)

\(\Leftrightarrow5xy\left(x+y\right)\left(x^2+xy+y^2\right)=0\)

\(\Rightarrow\)hoặc 5xy = 0 hoặc x + y = 0 hoặc \(x^2+xy+y^2=0\)

\(+)5xy=0\Rightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

\(+)x+y=0\Rightarrow x=-y\)(hai số đối)

\(+)x^2+xy+y^2=0\)

\(\Leftrightarrow x^2+2.x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=0\)

\(\Leftrightarrow\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}=0\)

Mà \(\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\)

(Dấu "="\(\Leftrightarrow x=y=0\))

Vậy x và y là hai số đối