3.Cho tam giác ABC có AB<AC a) so sánh ^C ;^B b) Vẽ AN_|_ BC so sánh NA;NB 4.Cho A(x)=4x^3–2x^2+8x–3 B(x)=5x^3+2x^2–9–4 A(x)+B(x);A(x)–B(x);B(x)–A(x) 5.Cho tam giác DEF cân tại D ,đường cao DA Cho DE=12cm;EF=16cm a)Chứng minh tam giác DAE=tam giác DAF b)Tính DA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu như hình vẽ
Tam giác ABC cân nên góc EBC = góc DCB (1)
Ta có + Góc ECB=180-CEB-EBC=90-EBC (2)
+Góc DBC=180-BDC-DCB=90-DCB (3)
Từ (1),(2),(3)=>Góc ECB=Góc DCB
Xét tam giác EBC và tam giác DCB có
+Góc EBC = Góc DCB (Chứng minh trên)
+BC-Cạnh chung
+Góc ECB=Góc DCB (Chứng minh trên)
=>Tam giác EBC=Tam giác DCB (g.c.g)
=>EC=DB (2 cạnh tương ứng )
=>Điều phải chứng minh
VẼ TAM GIÁC ABC CÂN TẠI A .2 ĐƯỜNG CAO BE,CF.
XÉT TAM GIÁC AEB VÀ AFC CÓ :
GÓC AEB =GÓC AFC =90* (DO BE ,CF LÀ ĐƯỜNG CAO)
GÓC AEF CHUNG
AB=AC (TAM GIÁC ABC CÂN TẠI A)
DO ĐÓ :TAM GIÁC AEB =TAM GIÁC AFC (G.C.G)
=>BE =CF (2 CẠNH TƯƠNG ỨNG )
Hình tự vẽ.
Vì\(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
Lấy\(BD\perp AC;CE\perp AB\)
Xét\(\Delta ABD\)và\(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)(Vì\(BD\perp AC;CE\perp AB\))
\(AB=AC\left(cmt\right)\)
\(\widehat{A}=\widehat{A}\)(góc chung)
Do đó:\(\Delta ABD=\Delta ACE\left(ch-gn\right)\)
\(\Rightarrow BD=CE\)(2 cạnh tương ứng)
Vậy trong một tam giác cân, hai đường cao ứng với hai cạnh bên thì bằng nhau.
P/s: Sai thì chỉ giúp. Cảm ơn.
Linz
Ta có :
\(M\left(x\right)=-10x^3+\left(-x\right)-1\)
\(\Leftrightarrow-10x^3-x-1=0\)
Áp dụng Mode set up + Vector ta đc
\(x_1=0,393....;x_2=0,5...\)
Góc AM?? Mình tính luôn ^AMB và ^AMC nhé !
Xét \(\Delta ABC\)có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)(theo định lý tổng 3 góc trong của 1 tam giác)
\(\Rightarrow\widehat{BAC}+30^o+15^o=180^o\)
\(\Rightarrow\widehat{BAC}=135^o\)
Vì AM là đường trung tuyến của \(\widehat{BAC}\)
\(\Rightarrow\widehat{MAB}=\widehat{MAC}=\frac{\widehat{BAC}}{2}=\frac{135^o}{2}=67,5^o\)
Xét \(\Delta AMB\)có : \(\widehat{MAB}+\widehat{B}+\widehat{AMB}=180^o\)(đ/lý tổng 3 góc trong của 1 tam giác)
\(\Rightarrow67,5^o+30^o+\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=82,5^o\)
\(\Rightarrow\widehat{AMC}=180^o-\widehat{AMB}=180^o-82,5^o=97,5^o\)(Vì \(\widehat{AMB}+\widehat{AMC}=180^o\))
Trên mặt phẳng bờ BC chưa A lấy điểm N sao cho \(\Delta\)NCM đều
=> ^CMN = 60 độ
=> ^NMB = 120 độ
Mà NM = MC = BM
=> \(\Delta\)NMB cân tại tại B => ^NBM = 30 độ=> ^CBN = 30 độ mà ^CBA = 30 độ
=> M; A; N thẳng hàng
Xét \(\Delta\)CBN có: ^NCB = 60 độ ; ^CBN = 30 độ
=> ^CNB = 90 độ
=> ^CNA = 90 độ
mà ^ACN = ^MCN - ^MCA = 45 độ
=> \(\Delta\)NCA vuông cân tại N
=> NC = NA mà NC = NM
=> NA = NM => \(\Delta\)NAM cân tại N có: ^MNA = 30 độ => ^NMA = ^NAM = ( 180 - 30 ) : 2 = 75 độ
=> ^CAM = ^NAM - ^NAC = 75 - 45 = 30 độ
=> ^NAB = 180 - 30 - 15 - 30 = 105 độ
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\)và 3x + y - 2z = 14
=> \(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}\)và 3x + y - 2z = 14
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{9}=\frac{y}{5}=\frac{2z}{16}=\frac{3x+y-2z}{9+5-16}=\frac{14}{-2}=-7\)
\(\frac{3x}{9}=-7\Rightarrow3x=-63\Leftrightarrow x=-21\)
\(\frac{y}{5}=-7\Rightarrow y=-35\)
\(\frac{2z}{16}=-7\Rightarrow2z=-112\Leftrightarrow z=-56\)
Sửa : 7/5 => y/5
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{3x+y-2z}{3.3+5-2.8}=\frac{14}{-2}=-7\)
\(\frac{x}{3}=-7\Leftrightarrow x=-21\)
\(\frac{y}{5}=-7\Leftrightarrow y=-35\)
\(\frac{z}{8}=-7\Leftrightarrow z=-56\)