K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Lời giải :

a) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)

\(=0,1-\sqrt{0,1}\)

b) \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

c) \(\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)

d) \(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)

e) \(\sqrt{16-6\sqrt{7}}=\sqrt{9-2\cdot3\cdot\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)

2 tháng 7 2019

Ta trục căn thức ở mỗi số hạng của A sau đó khử liên tiếp đc : A = 11 - 1 = 10

Ta có : \(B=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+...+\frac{2}{2\sqrt{35}}\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+...+\frac{2}{\sqrt{35}+\sqrt{35}}\)

\(B>2\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{35}+\sqrt{36}}\right)\)

\(B>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)

\(B>2\left(6-1\right)=10\)

Vậy A < B

Rõ ràng p=2 hoặc p=3 thì không thỏa mãn yêu đều đề bài

Ta xét với p>3 khi đó p là số nguyên tố nên p-1 , p+1 phải chẵn nên cả 2 số này đều phải chia hết cho 2 . Mặt khác ta xét tiếp : trong 3 số tự nhiên liên tiếp p-1,p,p+1 thì hẳn phải có một số chia hết cho 3 . Nhưng đó không thể là p do p nguyên tố >3 . Vậy ta chỉ xét 2 trường hợp

*> TH1 : p-1 chia hết cho 3 thì vì p-1 có 6 ước số tự nhiên nên có tiếp 2 khả năng

1) p-1=2^2.3=12 => p=13 =>p+1=14 ( không thỏa mãn )

2) p-1=2.3^2=18=> p=19 =>p+1=20 ( thỏa mãn )

*> TH2 : p+1 chia hết cho 3 thì vì p+1 có 6 ước số tự nhiên nên có tiếp 2 khả năng

1) p+1=2^2.3=12 => p=11=> p-1=10 ( không thỏa mãn )

2) p+1=2.3^2=18 => p=17=> p-1=16 ( không thỏa mãn )

Vậy ta kết luận chỉ có p=19 là thỏa mãn

1 tháng 7 2019

Êu , lần sau cop mạng nhớ ghi nguồn vào bạn =)) ăn xong đéo định trả ơn à ?

Ta có \(5^x=y^4+4y+1\)

\(\Leftrightarrow5^x=\left(y+2\right)^2-3\)

\(\Leftrightarrow5^x-\left(y+2\right)^2=-3\)

Xét x=0

\(\Rightarrow\left(y+2\right)^2=1+3=4\)

\(\Rightarrow y+2=2\Rightarrow y=0\left(tm\right)\)

Xét x>0 

Vì 5x và -3 là 2 số lẻ => (y+2)2là số chẵn

Đặt (y+2)2=4k2                (k>1)

=> (y+2)2=5x+3

=> 5x=4k2-3

Vì k>1 nên 4k2-3\(⋮̸\)5

Vậy x=0,y=0 

1 tháng 7 2019

còn x=2 và y=2 nữa nha bn

\(a+b+c=3\)

\(\Leftrightarrow\left(a+b+c\right)^2=9\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+c^2+b^2=9-2\left(ab+bc+ca\right)\)

Nếu \(ab+bc+ca>3\) thì \(a^2+b^2+c^2< 3\left(vl\right)\)

\(\Rightarrow ab+bc+ca\le3\)

30 tháng 6 2019

\(\approx103680.0018\)

30 tháng 6 2019

\(\frac{5^7}{9^8}+5\frac{6^8}{3^4}=\frac{5^7}{9^8}+\frac{5.3^4.6^8}{3^4}\)

\(=\frac{5^7}{9^8}+\frac{5.3^{16}.6^8}{9^2.9^6}=\frac{5^7}{9^8}+\frac{5.3^{24}.2^8}{9^8}=\frac{5\left(5^6+3^{24}.2^8\right)}{9^8}\)