Cho \(a.b.c>0\) và \(a+2b+3c\ge5\)
Tìm \(A_{min}=a+b+c+\frac{1}{4a}+\frac{4}{9b}+\frac{1}{c}\)
cháu chỉ cần cách đoán dấu "=" thôi ạ.Bác nào có tâm chỉ cháu với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ACDE có:
AI = IE
DI = IC
=> Tứ giác ACDE là hình bình hành
Lại có: góc CAD = 90 độ
=> Tứ giác ACED là hình chữ nhật
b) Có góc DAC = ACB = 90 độ ( HBH ABCD)
Ở câu a có tứ giác ACED là hình chữ nhật => Góc ACE = 90 độ
Có góc BCE = góc ACB + góc ACE
=> Góc BCE = 90 độ + 90 độ
=> Góc BCE = 180 độ
=> B,C,E thẳng hàng
c) Xét HBH ABCD có AD = BC
Xét HCN ACDE có AD = CE
=> BC = CE
=> C là trung điểm của BE
\(\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left(1-a^2+b^2+c^2\right)\)
\(=\left(a^2+b^2+c^2\right)\left[\left(1-a\right)\left(1+a\right)+b^2+c^2\right]\)
mik làm thế này k bít có đúng k
Bài làm
( a2 + b2 + c2 ) - ( a2 + b2 + c2 )2
= ( a2 + b2 + c2 ) - ( a2 + b2 + c2 + a2b2 + a2c2 + b2c2 )
= a2 + b2 + c2 - a2 - b2 - c2 - a2b2 - a2c2 - b2c2
= -( a2b2 + a2c2 + b2c2 )
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
\(=x^{15}-7x^{14}-x^{14}+7x^{13}+x^{13}-7x^{12}+...\)
\(-7x^2-x^2+7x+x-5\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+...-x\left(x-7\right)+\left(x-7\right)+2\)
\(=2\)
Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
Theo đề, ta có: \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)
\(\Leftrightarrow a^2+3a+2-a^2-a=50\)
\(\Leftrightarrow2a+2=50\Leftrightarrow a+1=25\Leftrightarrow a=24\)
Vậy 3 số đó là 24; 25; 26
\(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy \(x\in\left\{6;-4\right\}\)
\(x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2+6x-8x-24=0\)
\(x\cdot\left(x+6\right)-8\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-8\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-8=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=8\end{cases}}}\)
a^2 + b^2 - 2a + 2b - 2ab
= (a^2 - 2ab + b^2) - 2(a - b)
= (a - b)^2 - 2(a - b)
= (a - b)(a - b - 2)
a^2+b^2-2a+2b-2ab
=(a^2+b^2-2ab)-(2a-2b)
=(a-b)^2-2(a-b)
=(a-b)(a-b-2)
t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính casio:)
tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.