K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Đặt \(\hept{\begin{cases}\sqrt{4x-1}=a\\\sqrt{y-5}=b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3a+\frac{2\left(b^2+5\right)}{b}=8\\4a-\frac{3}{b}=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12a+\frac{8\left(b^2+5\right)}{b}=32\\12a-\frac{9}{b}=15\end{cases}}\)

\(\Rightarrow\frac{8\left(b^2+5\right)}{b}+\frac{9}{b}=17\)

Làm tiêp

25 tháng 12 2018

\(\hept{\begin{cases}2x+3y=5\\4x+6y=10\end{cases}ko}\)biết làm

25 tháng 12 2018

\(\hept{\begin{cases}2x+3y=5\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+3y=5\\2\left(2x+3y\right)=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+3y=5\\2x+3y=5\end{cases}}\)

\(\Leftrightarrow2x+3y=5\)

\(\Leftrightarrow2x+3y-5=0\)

\(\Rightarrow\)phương trình có vô số nghiệm

Vậy phương trình có vô số nghiệm.

Sai thì thôi nhé~

24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

24 tháng 12 2018

Đề sai r kìa ... Sửa lại theo ý mình nhé !

Hệ \(\hept{\begin{cases}\frac{3x}{\sqrt{3x+2}}-\frac{x}{y-3}=5\\\frac{2x}{\sqrt{3x+2}}+\frac{3x}{y-3}=7\end{cases}}\)(chỗ này cx có thể sửa thành 3x-2)

\(ĐKXĐ:\hept{\begin{cases}x>-\frac{2}{3}\\y\ne3\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=a\\\frac{x}{y-3}=b\end{cases}}\)

Hệ đã cho tương đương với hệ sau

\(\hept{\begin{cases}3a-b=5\\2a+3b=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}9a-3b=15\\2a+3b=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}11a=22\\2a+3b=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\2a+3b=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{\sqrt{3x+2}}=2\left(1\right)\\\frac{x}{y-3}=1\left(2\right)\end{cases}}\)

Giải (1) ta đc : 

\(\left(1\right)\Leftrightarrow x=2\sqrt{3x+2}\)

     \(\Leftrightarrow\hept{\begin{cases}x>0\left(DoVP>0\forall x>-\frac{2}{3}\right)\\x^2=4\left(3x+2\right)\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x=8\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x>0\\x^2-12x+36=44\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x>0\\\left(x-6\right)^2=44\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x>0\\x=\pm2\sqrt{11}+6\end{cases}}\)

  \(\Leftrightarrow x=6+2\sqrt{11}\)

Thay vào (2) sẽ tìm đc y

P/S: Số xấu quá nên tớ chỉ làm đến đây thôi -,-