Trong một bài toán hình, họ bắt em phải đi chứng minh chiều cao của 1 ngọn núi, cho biết tại 2 điểm cắt nhau 500m (tam giác ABC vuông tại C, góc B nằm trên AC, trong đó AB là 500m) tức là AB và BC đều là 500m luôn đúng ko ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng hệ thức lượng trong tam giác vuông:
\(AB^2=BH.BC\Rightarrow BC=\frac{AB^2}{BH}=\frac{6^2}{3}=12\)
=> \(HC=BC-BH=12-3=9\)
=> \(AH^2=BH.CH=3.9=27\Rightarrow AH=3\sqrt{3}\)
Áp dụng định lí pi-ta-go
\(AC^2=BC^2-AB^2=12^2-6^2=108\)
=> \(AC=6\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
số vô tỉ không chuyển thành phân số được bạn à chỉ có số hữu tỉ mới được thôi
Số vô tỉ không thể về dạng đúng chuẩn nhất chỉ có thể về dạng gần đúng: dùng horobot: https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=3.2390849202991
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}^2-1^2}-\frac{\sqrt{3}-1}{\sqrt{3}^2-1^2}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{3}^2-1^2}\)
\(=\frac{2}{3-1}=\frac{2}{2}=1\)
Quy đồng lên ta có:
\(\frac{\sqrt{3}+1-\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
Áp dụng hằng đẳng thức ta có
\(\frac{2}{\left(\sqrt{3}\right)^2-1^2}=\frac{2}{3-1}=\frac{2}{2}=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{5-3x}=\sqrt{2x+8}\)
\(\Leftrightarrow5-3x=2x+8\)
\(\Leftrightarrow-3x-2x=8-5\)
\(\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\frac{-3}{5}\)
P/S" ko chắc
Mk sửa đề lại 1 chút ( chả bt mk nhìn thế nào mak vt lộn hết cả đề )......
BÀI 1: Rút gọn
\(C=a\sqrt{\frac{4a^2-4ab+b^2}{a^2}}-2a-b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm giá trị lớn nhất của \(\frac{2020-x}{6-x}\)
Ta có : \(\frac{2020-x}{6-x}=\frac{6-x+2014}{6-x}=\frac{6-x}{6-x}+\frac{2014}{6-x}=1+\frac{2014}{6-x}\)
Đa thức lớn nhất \(\Leftrightarrow1+\frac{2014}{6-x}\)lớn nhất \(\Rightarrow\frac{2014}{6-x}\)lớn nhất \(\Rightarrow6-x\)nhỏ nhất và \(6-x>0\)
Mà \(x\in Z\)\(\Rightarrow x=5\)
Vậy giá trị lớn nhất của đa thức \(=\frac{2020-5}{6-5}=2020-5=2015\)\(\Leftrightarrow x=5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: \(x^2+5x+3\ge0\); \(x^2+5x-2\ge0\)(1)
\(\sqrt{x^2+5x+3}+\sqrt{x^2+5x-2}=5\)(2)
Dễ thấy
\(\sqrt{x^2+5x+3}\ne\sqrt{x^2+5x-2}\)
pt (2) <=> \(\frac{5}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=5\)
<=> \(\frac{1}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=1\)
<=>\(\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}=1\)
<=> \(\sqrt{x^2+5x+3}=1+\sqrt{x^2+5x-2}\)
<=> \(x^2+5x+3=1+x^2+5x-2+2\sqrt{x^2+5x-2}\)
<=> \(\sqrt{x^2+5x-2}=2\)
<=> \(x^2+5x-6=0\)
<=> x=1 ( tm đk (1) )
hoặc x=-6 ( tmđk (1))
√x2+5x+3 + √x2+5x-2 =5
<=> √x2+5x+3 = 5-√x2+5x-2
<=> x2+5x+3=25-10√x2+5x-2 +x2+5x-2
<=> 3=25-10√x2+5x-2 -2
<=> 3=23-10√x2+5x-2
<=> 10√x2+5x-2=23-3=20
<=> √x2+5x-2=2
<=> x2+5x-2=4
<=> x2+5x-2-4=0
<=> x2+5x-6=0
<=> x=-5(+-) √52-4.1.(-6) / 2.1
<=> x=-5(+-)√25+24 / 2
<=>x=-5+7 / 2 hoặc x=-5-7 / 2
<=> x=1 hoặc x=(-6)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK \(x\ge0,x\ne1,2\)
Ta có
\(P=\sqrt{x-1}-1+\sqrt{6-3x}+1\)
\(=\frac{x-1-1}{\sqrt{x-1}+1}+\sqrt{3\left(2-x\right)}+1\)
\(=\left(2-x\right)\left(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}\right)+1\)
Nhận thấy \(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}>0\)
mà \(2-x\ge0\)
\(\Rightarrow\left(2-x\right)\left(\sqrt{3}-\frac{1}{\sqrt{x-1}+1}\right)+1\ge1\)
Dấu "=" xr khi 2-x=0