Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng hoặc bình phương một hiệu:
a) x2-6x+9 b) 4x2+4x+1
c) 4x2+12xy+9y2 d) 4x4-4x2+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y2(\(x\) + y) - ( \(x\) - 7)2 (đk \(x\) +y ≥ 0)
= (y\(\sqrt{\left(x+y\right)}\) )2 - (\(x\) - 7)2
= (y\(\sqrt{x+y}\) - (\(x-7\)))( y\(\sqrt{x+y}\) + (\(x\) - 7))
= (y\(\sqrt{x+y}\) - \(x\) + 7)(y\(\sqrt{x+y}\) + \(x\) - 7)
a) Ta có:
VT = (x - y)² + 4xy
= x² - 2xy + y² + 4xy
= x² + 2xy + y²
= (x + y)²
= VP
b) Ta có:
(x + y)² = (x - y)² + 4xy
= 5² + 4.3
= 25 + 12
= 37
a : 7 dư 3 cm a2 : 7 dư 2
Ta có: a = 7k + 3
⇔ a2 = (7k + 3)2
⇔ a2 = 49k2 + 42k + 9
⇔ a2 = 7.(7k2 + 6k + 1) + 2
7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7
⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)
Cách 2 sử dụng đồng dư thức:
a \(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7) 32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)
\(\text{∘ Ans}\)
\(\downarrow\)
`1,`
`86.15 + 150. 1,4`
`= 86. 15 + 15. 14`
`= 15.(86 + 14)`
`= 15.100`
`= 1500`
`2,`
`93.32 + 14.16`
`= 93.32 + 2.7.16`
`= 93.32 + 32.7`
`= 32.(93 + 7)`
`= 32.100`
`= 3200`
`3,`
\(98,6\cdot199-990\cdot9,86\)
`=`\(98,6\cdot199-99\cdot98,6\)
`=`\(98,6\cdot\left(199-99\right)\)
`=`\(98,6\cdot100\)
`=`\(9860\)
`4,`
\(85\cdot12,7+5\cdot3\cdot12,7?\)
`=`\(85\cdot12,7+15+12,7\)
`=`\(12,7\cdot\left(85+15\right)\)
`=`\(12,7\cdot100\)
`= 1270`
`5,`
\(0,12\cdot90-110\cdot0,6+36-25\cdot6?\)
\(=6\cdot1,8-11\cdot6+6\cdot6-25\cdot6\)
\(=6\cdot\left(1,8-11+6-25\right)\)
\(=6\cdot\left(-28,2\right)=-169,2\)
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
1) \(\left(x+\dfrac{1}{3}\right)^3=x^3+3.x^2.\dfrac{1}{3}+3.x.\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3\)
\(=x^3+x^2+\dfrac{x}{3}+\dfrac{1}{27}\)
2) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.y^2+3.2x.\left(y^2\right)^2+\left(y^2\right)^3\)
\(=8x^3+12x^2y^2+6xy^4+y^6\)
3) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}y\right)^3=\left(\dfrac{1}{2}x^2\right)^3+3.\left(\dfrac{1}{2}x^2\right)^2.\dfrac{1}{3}y+3.\dfrac{1}{2}x^2.\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=\dfrac{1}{8}x^6+\dfrac{1}{4}x^4y+\dfrac{1}{6}x^2y^2+\dfrac{1}{27}y^3\)
4) \(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.3x^2.\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)
5) \(\left(\dfrac{2}{3}x^2-\dfrac{1}{2}y\right)^3=\left(\dfrac{2}{3}x^2\right)^3-3.\left(\dfrac{2}{3}x^2\right)^2.\dfrac{1}{2}y+3.\dfrac{2}{3}x^2.\left(\dfrac{1}{2}y\right)^2-\left(\dfrac{1}{2}y\right)^3\)
\(=\dfrac{8}{27}x^6-\dfrac{1}{3}x^4y+\dfrac{1}{2}x^2y^2-\dfrac{1}{8}y^3\)
6) \(\left(2x+\dfrac{1}{2}\right)^3=\left(2x\right)^3+3.\left(2x\right)^2.\dfrac{1}{2}+3.2x.\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=8x^3+6x^2+\dfrac{3}{2}x+\dfrac{1}{8}\)
7) \(\left(x-3\right)^3=x^3-3.x^2.3+3.x.3^2-3^3\)
\(=x^3-9x^2+27x-27\)
8) \(\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x.1+1^2\right)\)
\(=x^3+1^3\)
\(=x+1\)
9) \(\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x-3\right)\left(x^2+x.3+3^2\right)\)
\(=x^3-3^3\)
\(=x^3-27\)
10) \(\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+x.2+2^2\right)\)
\(=x^3-2^3\)
\(=x^3-8\)
11) \(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=\left(x+4\right)\left(x^2-x.4+4^2\right)\)
\(=x^3+4^3\)
\(=x^3+64\)
12) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
13) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+x^2.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
14) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
\(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)
\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
\(\Rightarrow dpcm\)
\(VP=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)=\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y=\)
\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=VT\)
a, F(\(x\)) = a\(x^2\) + b\(x\) + c (a; b; c \(\in\) Q và a \(\ne\) 0)
Vì F(\(x\)) có nghiệm là \(\sqrt{2}\) ta có F(\(\sqrt{2}\)) = 0
⇔ a.(\(\sqrt{2}\))2 + b.(\(\sqrt{2}\)) + c = 0
2a + \(\sqrt{2}\)b + c = 0 ⇒ c = - (2a + \(\sqrt{2}\)b) (1)
a\(x^2\) + b\(x\) + c = 0
a(\(x^2\) + 2. \(\dfrac{b}{2a}\)\(x\) + \(\dfrac{b^2}{4a^2}\)) - \(\dfrac{b^2-4ac}{4a}\) = 0
a.(\(x\) + \(\dfrac{b}{2a}\))2 = \(\dfrac{b^2-4ac}{4a}\)
(\(x\) + \(\dfrac{b}{2a}\) )2 = \(\dfrac{b^2-4ac}{4a^2}\)
\(\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{b^2-4ac}}{2a}\\x=\dfrac{-b-\sqrt{b^2-4ac}}{2a}\end{matrix}\right.\)
Thay (1) vào \(x\) = \(\dfrac{-b-\sqrt{b^2-4ac}}{2a}\) ta có
\(x\) = \(\dfrac{-b-\sqrt{b^2-4a\left(2a+\sqrt{2}b\right)}}{2a}\)
a) \(f\left(x\right)=ax^2+bx+c=0\)
\(\Rightarrow f\left(x_1=\sqrt[]{2}\right)=2a+b\sqrt[]{2}+c=0\left(1\right)\)
\(S=x_1+x_2=-\dfrac{b}{a}\Rightarrow x_2=-\dfrac{b}{a}-x_1=-\dfrac{b}{a}-\sqrt[]{2}\)
\(P=x_1.x_2=\dfrac{c}{a}\Rightarrow x_2=\dfrac{c}{a.x_1}=\dfrac{c}{a.\sqrt[]{2}}\)
Vậy nghiệm còn lại là \(-\dfrac{b}{a}-\sqrt[]{2}\) hay \(\dfrac{c}{a.\sqrt[]{2}}\left(a,b,c\in Q;a\ne0\right)\)
b) \(P\left(x\right)=x^2-px+q\)
\(S=x_1+x_2=p;P=x_1.x_2=q\)
Để P(x) có nghiệm \(x_1;x_2\) đều là số nguyên
\(\Rightarrow S=p;P=q\) đều là số nguyên
mà \(p,q\) là số nguyên tố
\(\Rightarrow p;q⋮1\)
\(\Rightarrow\left(p;q\right)\in\left\{-1;1\right\}\Rightarrow p=\pm1;q=\pm1\)
Ta thay \(p=\pm1;q=\pm1\) vào \(P\left(x\right)=x^2-px+p=0\) ta được \(\Delta=5;\Delta=-4< 0\) \(\Rightarrow p,q\) không thỏa nghiệm đa thức nguyên
\(\Rightarrow\left(p;q\right)\in\varnothing\)
a)x2-6x+9
=x2-2.x.3+32
=(x-3)2
b)4x2+4x+1
=(2x)2+2.2x.1+12
=(2x+1)2
c)4x2+12xy+9y2
=(2x)2+2.2x.3y+(3y)2
=(2x+3y)2
d)4x4-4x2+4
=(2x2)2-2.2x2.2+22
=(2x2-2)2