Để bảo vệ vốn gen của loài người cần tiến hành những biện pháp gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
1. Định nghĩa
Hàm số mũ là hàm số có dạng y= ax, hàm số lôgarit là hàm số có dạng y = logax ( với cơ số a dương khác 1).
2. Tính chất của hàm số mũ y= ax (a>0,a≠1)(a>0,a≠1).
- Tập xác định: RR.
- Đạo hàm: ∀x∈R,y′=axlna∀x∈R,y′=axlna.
- Chiều biến thiên
+) Nếu a>1a>1 thì hàm số luôn đồng biến
+) Nếu 0<a<10<a<1 thì hàm số luôn nghịch biến
- Tiệm cận: trục Ox là tiệm cận ngang.
- Đồ thị nằm hoàn toàn về phía trên trục hoành ( y= ax > 0, ∀x), và luôn cắt trục tung tại điểm (0;1)(0;1) và đi qua điểm (1;a)(1;a).
3. Tính chất của hàm số lôgarit y = logax (a>0,a≠1)(a>0,a≠1).
- Tập xác định: (0;+∞)(0;+∞).
- Đạo hàm ∀x∈(0;+∞),y′=1xlna∀x∈(0;+∞),y′=1xlna.
- Chiều biến thiên:
+) Nếu a>1a>1 thì hàm số luôn đồng biến
+) Nếu 0<a<10<a<1 thì hàm số luôn nghịch biến
- Tiệm cận: Trục Oy là tiệm cận đứng.
- Đồ thị nằm hoàn toàn phía bên phải trục tung, luôn cắt trục hoành tại điểm (1;0)(1;0) và đi qua điểm (a;1)(a;1).
4. Chú ý
- Nếu a>1a>1 thì lna>0lna>0, suy ra (ax)′>0∀x(ax)′>0∀x và (logax)’ > 0, ∀x > 0;
do đó hàm số mũ và hàm số lôgarit với cơ số lớn hơn 1 đều là những hàm số luôn luôn đồng biến.
Tương tự, nếu 0<a<10<a<1 thì lna<0lna<0, (ax)’ < 0 và (logax)’ < 0, ∀x > 0; hàm số mũ và hàm số lôgarit với cơ số nhỏ hơn 1 đều là những hàm số luôn luôn nghịch biến.
- Công thức đạo hàm của hàm số lôgarit có thể mở rộng thành
(ln|x|)′=1x,∀x≠0(ln|x|)′=1x,∀x≠0 và (loga|x|)’ = 1xlna1xlna, ∀x≠≠ 0.
Trong không gian hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) song song với mặt phẳng (Q) x+2y-2z+1=0 và (P) cách điểm M(1; -2; 1) một khoảng bằng 3.
đây bạn nhé
HT
1. Hàm số mũ
Cho số a > 0 và a ≠ 1. Hàm số y = ax được gọi là hàm số mũ cơ số a.
Các tính chất của hàm số mũ y = ax
Tập xác định | (-∞; +∞) |
Đạo hàm | y’= ax.lna |
Chiều biến thiên | + Nếu a > 1 thì hàm số luôn đồng biến + Nếu 0 < a < 1 thì hàm số nghịch biến |
Tiệm cận | Trục Ox là tiệm cận ngang |
Đồ thị | Đi qua các điểm (0; 1); (1; a) Nằm phía trên trục hoành ( y = ax > 0 mọi x) |
2. Hàm Logarit
Cho số a > 0 và a ≠ 1 . Hàm số y = logax được gọi là hàm số logarit cơ số a
Tập xác định | (0; +\(\infty\)) |
Đạo hàm | y' = \(\frac{1}{xIna}\) |
Chiều biến thiên | + Nếu a > 1: hàm số luôn đồng biến + Nếu 0 < a < 1: hàm số luôn nghịch biến |
Tiệm cận | Trục Oy là tiệm cận đứng |
Đồ thị | Đi qua các điểm (1; 0); (a; 1) Nằm bên phải trục tung. |
3. Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.
HT
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{x}{5}=\frac{3y}{6}=\frac{3z}{9}=\frac{x-3y+3z}{5-6+9}=\frac{24}{8}=3.\)
\(\Rightarrow\hept{\begin{cases}x=5.3=15\\y=2.3=6\\z=3.3=9\end{cases}}\)
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{3y}{6}=\frac{3z}{9}=\frac{x-3y+3z}{5+6-9}=\frac{24}{2}=12.\)
\(\hept{\begin{cases}x=60\\y=24\\z=36\end{cases}}\)
Tham khảo ạ :
HT
k mình nha